
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 2935
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

www.manaraa.com

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

www.manaraa.com

Paolo Giorgini Jörg P. Müller
James Odell (Eds.)

Agent-Oriented
Software
Engineering IV

4th International Workshop, AOSE 2003
Melbourne, Australia, July 15, 2003
Revised Papers

1 3

www.manaraa.com

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Paolo Giorgini
University of Trento, Department of Information and Communication Technology
Via Sommarive, 14, 38050 Povo, Trento, Italy
E-mail: paolo.giorgini@dit.unitn.it

Jörg P. Müller
Siemens AG, Corporate Technology
Intelligent Autonomous Systems
Otto-Hahn-Ring 6, 81730 Munich, Germany
E-mail: joerg.p.mueller@siemens.com

James Odell
James Odell Associates
3646 West Huron River Drive, Ann Arbor, MI 48103, USA
E-mail: email@jamesodell.com

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): D.2, I.2.11, F.3, D.1, D.2.4, D.3

ISSN 0302-9743
ISBN 3-540-20826-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

c© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 10981368 06/3142 5 4 3 2 1 0

www.manaraa.com

Preface

The explosive growth of application areas such as electronic commerce, enter-
prise resource planning and mobile computing has profoundly and irreversibly
changed our views on software systems. Nowadays, software is to be based on
open architectures that continuously change and evolve to accommodate new
components and meet new requirements. Software must also operate on diffe-
rent platforms, without recompilation, and with minimal assumptions about its
operating environment and its users. Furthermore, software must be robust and
autonomous, capable of serving a naive user with a minimum of overhead and
interference.

Agent concepts hold great promise for responding to the new realities of soft-
ware systems. They offer higher-level abstractions and mechanisms that address
issues such as knowledge representation and reasoning, communication, coordi-
nation, cooperation among heterogeneous and autonomous parties, perception,
commitments, goals, beliefs, and intentions, all of which need conceptual mode-
ling. On the one hand, the concrete implementation of these concepts can lead
to advanced functionalities, e.g., in inference-based query answering, transaction
control, adaptive workflows, brokering and integration of disparate information
sources, and automated communication processes. On the other hand, their rich
representational capabilities allow more faithful and flexible treatments of com-
plex organizational processes, leading to more effective requirements analysis
and architectural/detailed design.

In keeping with its very successful predecessors, AOSE 2000, AOSE 2001,
and AOSE 2002 (Lecture Notes in Computer Science Volumes 1957, 2222, and
2585), the AOSE 2003 workshop sought to examine the credentials of agent-
based approaches as a software engineering paradigm, and to gain an insight
into what agent-oriented software engineering will look like.

AOSE 2003 was hosted by the 2nd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2003) held in Melbourne,
Australia on July 2003. The workshop received 43 submissions, and 15 of them
were accepted for presentation (an acceptance rate of 30%). These papers were
reviewed by at least 3 members of an international program committee compo-
sed of 25 researchers. The submissions followed a call for papers on all aspects
of agent-oriented software engineering, and showed the range of results achieved
in several areas, such as methodologies, modeling, architectures, and tools.

The workshop program included an invited talk, a technical session in which
the accepted papers were presented and discussed, and a closing plenary session.
It congregated more than 50 attendees, among them researchers, students, and
practitioners, who contributed to the discussion of research problems related to
the main topics in AOSE.

This volume contains revised versions of the 15 papers presented at the works-
hop. Additionally, it contains an invited contribution by Bernhard Bauer and
Jörg Müller on “Using UML in the Context of Agent-Oriented Software En-
gineering: State of the Art.” We believe that this thoroughly prepared volume

www.manaraa.com

VI Preface

is of particular value to all readers interested in the key topics and most recent
developments in the very exciting field of agent-oriented software engineering.

We thank the authors, the participants, and the reviwers for making AOSE
2003 a high-quality scientific event.

November 2003 Paolo Giorgini
Jörg P. Müller

James Odell

www.manaraa.com

Organization

Organizing Committee

Paolo Giorgini (Co-chair)
Department of Information and Communication Technology
University of Trento, Italy
Email: paolo.giorgini@dit.unitn.it

Jörg P. Müller (Co-chair)
Siemens AG, Germany
Email: joerg.mueller@mchp.siemens.de

James Odell (Co-chair)
James Odell Associates, Ann Arbor, MI, USA
Email: email@jamesodell.com

Steering Committee

Paolo Ciancarini, University of Bologna, Italy
Gerhard Weiss, Technische Universitaet Muenchen, Germany
Michael Wooldridge, University of Liverpool, UK

Program Committee

Bernard Bauer (Germany)
Federico Bergenti (Italy)
Scott DeLoach (USA)
Marie-Pierre Gervais (France)
Olivier Gutknecht (France)
Brian Henderson-Sellers (Australia)
Michael Huhns (USA)
Carlos Iglesias (Spain)
Nicholas Jennings (UK)
Catholijn Jonker (Netherlands)
Liz Kendall (Australia)
David Kinny (Australia)
Manuel Kolp (Belgium)

Yannis Labrou (USA)
Juergen Lind (Germany)
John Mylopolous (Canada)
Andrea Omicini (Italy)
Van Parunak (USA)
Anna Perini (Italy)
Marco Pistore (Italy)
Onn Shehory (Israel)
Gerhard Weiss (Germany)
Paola Turci (Italy)
Eric Yu (Canada)
Franco Zambonelli (Italy)

Auxiliary Reviewers: Paolo Busetta, Julio Cesar Leite, Aizhong Lin, Matthias
Nickles, Michael Rovatsos, Marco Roveri, Arnon Sturm, Angelo Susi, Martijn
Schut

www.manaraa.com

Table of Contents

Modeling Agents and Multiagent Systems

Using UML in the Context of Agent-Oriented Software Engineering:
State of the Art . 1

Bernhard Bauer, Jörg P. Müller

Towards a Recursive Agent Oriented Methodology
for Large-Scale MAS . 25

Adriana Giret, Vicente Botti

Agent-Oriented Modeling by Interleaving Formal and
Informal Specification . 36

Anna Perini, Marco Pistore, Marco Roveri, Angelo Susi

The ROADMAP Meta-model for Intelligent Adaptive Multi-agent
Systems in Open Environments . 53

Thomas Juan, Leon Sterling

Modeling Deployment and Mobility Issues in Multiagent Systems
Using AUML . 69

Agostino Poggi, Giorgio Rimassa, Paola Turci, James J. Odell,
Haralabos Mouratidis, G. Manson

Methodologies and Tools

A Knowledge-Based Methodology for Designing Reliable
Multi-agent Systems . 85

Mark Klein

A Framework for Constructing Multi-agent Applications and
Training Intelligent Agents . 96

Pericles A. Mitkas, Dionisis Kehagias, Andreas L. Symeonidis,
Ioannis N. Athanasiadis

Activity Theory for the Analysis and Design of Multi-agent Systems 110
Rubén Fuentes, Jorge J. Gómez-Sanz, Juan Pavón

A Design Taxonomy of Multi-agent Interactions . 123
H. Van Dyke Parunak, Sven Brueckner, Mitch Fleischer,
James J. Odell

Automatic Derivation of Agent Interaction Model from Generic
Interaction Protocols . 138

José Ghislain Quenum, Aurélien Slodzian, Samir Aknine

www.manaraa.com

X Table of Contents

Patterns, Architectures, and Reuse

Building Blocks for Agent Design . 153
Hrishikesh J. Goradia, José M. Vidal

Supporting FIPA Interoperability for Legacy Multi-agent Systems 167
Christos Georgousopoulos, Omer F. Rana, Anthony Karageorgos

Dynamic Multi-agent Architecture Using Conversational
Role Delegation . 185

Denis Jouvin, Salima Hassas

Roles and Organizations

Temporal Aspects of Dynamic Role Assignment . 201
James J. Odell, H. Van Dyke Parunak, Sven Brueckner, John Sauter

From Agents to Organizations: An Organizational View
of Multi-agent Systems . 214

Jacques Ferber, Olivier Gutknecht, Fabien Michel

Modelling Multi-agent Systems with Soft Genes,
Roles, and Agents . 231

Qi Yan, XinJun Mao, Hong Zhu, ZhiChang Qi

Author Index . 247

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 1–24, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Using UML in the Context of Agent-Oriented Software
Engineering: State of the Art

Bernhard Bauer1 and Jörg P. Müller2

1 Institute of Computer Science, University of Augsburg, D-86135 Augsburg, Germany
Bernhard.Bauer@informatik.uni-augsburg.de

2 Siemens AG, Corporate Technology, CT IC 6, D-81730 Munich, Germany
joerg.p.mueller@siemens.com

Abstract. Most of the methodologies and notations for agent-oriented software
engineering developed over the past few years are based on the Unified
Modeling Language (UML) or proposed extensions of UML. However, at the
moment an overview on the different approaches is missing. In this paper. we
present a state-of-the-art survey of the different methodologies and notations
that, in one way or the other, rely on the usage of UML for the specification of
agent-based systems. We focus on two aspects, i.e., design methodologies for
agent-oriented software engineering, and different types of notations (e.g., for
interaction protocols, social structures, or ontologies) that rely on UML. 1

1 Introduction

The complexity of commercial software development processes increasingly requires
the usage of software engineering techniques, including methodologies and tools for
building, deploying, and maintaining software systems and solutions. In this context,
software methodologies play a key role. A software methodology is typically
characterized by a modeling language – used for the description of models, defining
the elements of the model together with a specific syntax (notation) and associated
semantics – and a software process – defining the development activities, the
interrelationships among the activities, and how the different activities are performed.
In particular, the software process defines phases for process and project management
as well as quality assurance. The three key phases that one is likely to find in any
software engineering process are that of analysis, design and implementation. In a
strict waterfall model these are the only phases; more recent software development
process models employ a “round trip engineering” approach, i.e., provide an iteration
of smaller granularity cycles, in which models developed in earlier phases can be
refined and adapted in later phases.

Agent technology enables the realization of complex software systems
characterized by situation awareness and intelligent behavior, a high degree of
distribution, as well as mobility support. Over the past year, agents have been very
successful from the scientific point of view; also, the beginning commercial success
of agent technology at the application level (in the sense of: intelligent components

1 This paper is a short and adapted version of [42]

www.manaraa.com

2 B. Bauer and J.P. Müller

supporting intelligent applications, see e.g., [44]) is evident today. However, the
potential role of agent technology as a new paradigm for software engineering has not
yet met with broad acceptance in industrial and commercial settings. We claim that
the main reason for this is the lack of accepted methods for software development
depending on widely standardized representations of artifacts supporting all phases of
the software lifecycle. In particular, these standardized representations are needed by
tool developers to provide commercial quality tools that mainstream software
engineering departments need for industrial agent systems development.

Currently, most industrial methodologies are based on the Object Management
Group’s (OMG) Unified Modeling Language (UML) accompanied by process
frameworks such as the Rational Unified Process (RUP), see [28] for details. The
Model-Driven Architecture (MDA [40]) from the OMG allows a cascade if code
generations from high-level models (platform independent model) via platform
dependent models to directly executable code (e.g., see the tool offered by Kennedy
Carter [39]).

Thus, one possibility to provide an answer regarding the state-of-the-art in agent-
oriented software engineering is to look at the level of support currently provided for
UML technologies by recent agent-based engineering approaches. In this paper we
will provide a detailed survey of methodologies and notations for agent-based
engineering of software systems based on UML.

In Section 2 we will have a closer look at different methodologies for designing
agent-based systems. In Section 3 focuses on notations based on UML. In particular,
we shall look at notations for interaction protocols, social structures, agent classes,
ontologies, and goals and plans. The paper concludes with a summary and an outlook
for further research in Section 4.

2 Methodologies

In this we will take a closer look at agent methodologies that directly extend object-
oriented – UML approaches. In the next section we will also give an overview of
UML notations and extensions available for the specification of agent-based systems.
Since most of the notations use graphical representations of software artifacts we will
use examples taken from the original research papers.

2.1 Agent Modeling Techniques for Systems of BDI Agents

One of the first methodologies for the development of BDI agents based on OO
technologies was presented in [2][3][4][5]. The agent methodology distinguishes
between the external viewpoint - the system is decomposed into agents, modeled as
complex objects characterized by their purpose, their responsibilities, the services
they perform, the information they require and maintain, and their external
interactions - and the internal viewpoint - the elements required by a particular agent
architecture must be modeled for each agent, i.e. an agent's beliefs, goals, and plans.
For each of these views different models are described (based on [2] and [5]):

The external view is characterized by two models which are largely independent of
the underlying BDI architecture:

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 3

Agent Model: This model describes the hierarchical relationship among different
abstract and concrete agent classes (Agent Class Model) similar to a UML class
diagram denoting both abstract and concrete (instantiable) agent classes, inheritance
and aggregation as well as predefined reserved attributes, e.g., each class may have
associated belief, goal, and plan models; and identifies the agent instances which may
exist within the system, their multiplicity, and when they come into existence (Agent
Instance Model) with the possibility to define initial-belief-state and initial-goal-state
attributes.

Interaction Model: describes the responsibilities of an agent class, the services it
provides, associated interactions, and control relationships between agent classes.
This includes the syntax and semantics of messages used for inter-agent
communication and communication between agents and other system components,
such as user interfaces.

BDI agents are internally viewed as having certain mental attitudes, Beliefs, Desires
and Intentions, which represent, respectively, their informational, motivational and
deliberative states. These aspects are captured, for each agent class, by the following
models.

Belief Model describes the information about the environment and internal state
that an agent of that class may hold, and the actions it may perform. The possible
beliefs of an agent and their properties, such as whether or not they may change over
time, are described by a belief set. In addition, one or more belief states - particular
instances of the belief set - may be defined and used to specify an agent's initial
mental state. The belief set is specified by a set of object diagrams which define the
domain of the beliefs of an agent class. A belief state is a set of instance diagrams
which define a particular instance of the belief set. Formally, defined by a set of typed
predicates whose arguments are terms over a universe of predefined and user-defined
function symbols.

Goal Model describes the goals that an agent may possibly adopt, and the events to
which it can respond. It consists of a goal set which specifies the goal and event
domain and one or more goal states - sets of ground goals - used to specify an agent's
initial mental state. A goal set is, formally, a set of goal formula signatures. Each such
formula consists of a modal goal operator applied to a predicate from the belief set.

Plan Model describes the plans that an agent may possibly employ to achieve its
goals. It consists of a plan set which describes the properties and control structure of
individual plans. Plans are modeled similar to simple UML State Chart Diagrams,
which can be directly executed showing how an agent should behave to achieve a
goal or respond to an event. In contrast to UML activities may be sub-goals, denoted
by formulae from the agent's goal set; conditions are predicates from the agent's belief
set; actions include those defined in the belief set, and built-in actions. The latter
include assert and retract, which update the belief state of the agent.

2.2 Message

MESSAGE (Methodology for Engineering Systems of Software Agents) [6][7] is a
methodology which builds upon best practice methods in current software
engineering such as for instance UML for the analysis and design of agent-based
systems. It consists of (i) applicability guidelines; (ii) a modeling notation that

www.manaraa.com

4 B. Bauer and J.P. Müller

a)

Agent Role Organization

Goal Task Service

Interaction Resource

b)

Implication Assignment

Acquaintance DataFlow

Fig. 1. a) concept symbols in MESSAGE; b) relations in MESSAGE

extends UML by agent-related concepts (inspired e.g. by Gaia); and (iii) a process for
analysis and design of agent systems based on Rational unified Process. The
MESSAGE modeling notation extends UML notation by key agent-related concepts.
We describe the notation used in MESSAGE based on the example presented in [7].
For details on the example we refer to this paper. The used concept and relation
symbols are shown in Fig. 1.
The main focus of MESSAGE is on the phase of analysis of agent-based systems. For
this purpose, MESSAGE presents five analysis models, which analysts can use to
capture different aspects of an agent-based system. The models are described in terms
of sets of interrelated concepts. The five models are (following [7][6]):

Organization Model: The Organization Model captures the overall structure and
the behavior of a group of agents and the external organization working together to
reach common goals. In particular, it represents the responsibilities and authorities
with respect to entities such as processes, information, and resources and the structure
of the organization in terms of sub-organization such as departments, divisions,
sections, etc. expressed through power relationships (e.g. superior-subordinate
relationships). Moreover it provides the social view characterizing the overall
behavior of the group, whereas the agent model covers the individual view dealing
with the behavior of agents to achieve common/social goals. It offers software
designers a useful abstraction for understanding the overall structure of the multi-
agent system, what the agents are, what resources are involved, what the role of each
agent is, what their responsibilities are, which tasks are achieved individually and
which achieved through co-operation. Different types of organization diagrams are
available in MESSAGE to support the graphical representation of social concepts (see
Fig. 2).

a) b)

Fig. 2. Examples of organization diagrams: a) structural relationships, b) acquaintance
relationships (analysis phase 0 and 1)

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 5

Goal/Task Model: The Goal/Task Model defines the goals of the composite
system, i.e. the agent system and its environment, and their decomposition into sub-
goals; the responsibility of agents for their commitments; the performance of tasks
and actions by agents, the goals the tasks satisfy and the decomposition of tasks into
sub-tasks as well as to describe tasks involved in an organizational workflow. It
captures what the agent system and constituent agents do in terms of the goals that
they work to attain and the tasks they must accomplish. The model also captures the
way that goals and tasks of the system as a whole are related to goals and tasks
assigned to specific agents and the dependencies among them. Goals and tasks both
have attributes of type Situation, such that they can be linked by logical dependencies
to form graphs that show e.g. decomposition of high-level goals into sub-goals, and
how tasks can be performed to achieve goals. UML Activity Diagrams are applied for
presentation purposes. Goals describe the desired states of the system and its
environment, whereas tasks describe state transitions that that are needed to satisfy
agent goal commitments. The state transition is specified as a pre-and post-condition
attribute pair. Actions are atomic tasks that can be performed by the agents to satisfy
their goal commitments. Task inputs are Model Elements (adapted from UML
defining elements composing models) that are processed in task. Task outputs are
updates of the input Model Elements plus any new Model Element produced by the
task. The desired states of a Model Element are specified by attributes called
invariants, which are conditions that should always be true. An example is shown in
Fig. 3.

a) b)

Fig. 3. Example of a) goal implication diagram, b) workflow diagram

Agent/Role Model: The Agent Model consists of a set of individual agents and
roles. The relationship between role and agent is defined analogous to that between an
interface and an object class: a role describes the external characteristics of an agent
in a particular context. An agent may be capable of playing several roles, and multiple
agents may be able to play the same role. roles can also be used as indirect references
to agents. An element of the Agent Model gathers together information specific to an
individual agent or role, including its relationships to other entities. In particular, it
contains a detailed and comprehensive description of each individual agent providing
an internal view including the agent's goals and the services, i.e. the functional
capability, they provide. In contrasts to the external perspective provided by the
Organization Model. For each agent/role it uses schemata supported by diagrams to

www.manaraa.com

6 B. Bauer and J.P. Müller

define its characteristics such as what goals it is responsible for, what events it needs
to sense, what resources it controls, what tasks it knows how to perform, 'behavior
rules', etc. An example for an agent model is given in Fig. 4.

The Domain (Information) Model: The Domain Model functions as a repository of
relevant information about the problem domain. The conceptualization of the specific
domain is assumed to be a mixture of object-oriented, i.e. all entities in the domain
are classified in classes and each class groups all entities with a common structure,
and relational, i.e. a number of relations describe the mutual relationships between
the entities belonging to the different classes. Thus the Domain Model defines the
domain-specific classes agents deal with and describes the structure of each class in
terms of a number (possibly null) of attributes having values that can belong to
primitive types or can be instances of other domain specific classes.

a)

R1

Resource
2

S1
A1 R2

S2Resource
1

G1
A2

manages
accesses

<<provision>>

<<play>>

<<play>>

<<wish>>

 b)

Fig. 4. Example of a) agent diagram2, b) delegation structure diagram

In addition, domain specific relations holding among the instances of the domain
specific classes are captured. Class diagrams are used for this model, as illustrated:

Fig. 5. Example of Domain Model as UML class diagrams

The Interaction Model: The Interaction Model is concerned with capturing the way in
which agents (or roles) exchange information with one another (as well as with their
environment captures). The content of the messages within an interaction may be
described in the Domain Model. Interactions are specified from both a high-level and
low-level perspective (interaction protocols based on the UML interaction protocols).

2 Taken from [6].

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 7

For each interaction among agents/roles, shows the initiator, the collaborators, the
motivator (generally a goal the initiator is responsible for), the relevant information
supplied/achieved by each participant, the events that trigger the interaction, other
relevant effects of the interaction (e.g. an agent becomes responsible for a new goal).
Larger chains of interaction across the system (e.g. corresponding to uses cases) can
also be considered such as delegation or workflows. An example for interaction is
shown in Fig. 6 and on agent interaction diagrams.

Fig. 6. Example of an Interaction

2.3 Tropos

Tropos [27][30][29] is another good example of a agent-oriented software
development methodology that is based on object-oriented techniques. In particular,
Tropos relies on UML and offers processes for the application of UML mainly for the
development of BDI agents and the agent platform JACK [34]. Some elements of
UML (like class, sequence, activity and interaction diagrams) are adopted as well for
modeling object and process perspectives. The concepts of i* [32] such as actor
(actors can be agents, positions or roles), as well as social dependencies among actors
(including goal, soft goal, task and resource dependencies) are embedded in a
modeling framework which also supports generalization, aggregation, classification,
and the notion of contexts [33]. Thus, Tropos was developed around two key features:
Firstly, the notions of agent, goal, plan and various other knowledge-level concepts
are provided as fundamental primitives used uniformly throughout the software
development process; secondly, a crucial role is assigned to requirements analysis and
specification when the system-to-be is analyzed with respect to its intended
environment using a phase model: Early Requirements: identify relevant stakeholders
(represented as actors), along with their respective objectives (represented as goals);
Late Requirements: introduce system to be developed as an actor describing the
dependencies to other actors indicating the obligations of the system towards its
environment; Architectural Design: introduce more system actors assigned sub-goals
or subtasks of the goals and tasks assigned to the system;

www.manaraa.com

8 B. Bauer and J.P. Müller

Actor: Hard goal: Soft goal:

Goal dependency:

Plan: Resource:

Contribution:

depender dependum dependee

AND decomposition: OR decomposition:

++/+/-/--

Fig. 7. Examples of Tropos notation

Detailed Design: define system actors in detail, including communication and
coordination protocols; Implementation: transform specifications into a skeleton for
the implementation mapping from the Tropos constructs to those of an agent
programming platform. The specification covers the following notation illustrated in
Fig. 7.

The Tropos specification makes use of the following types of models (following
[27]):
Actor and Dependency Model: Actor and dependency models graphically represented
through actor diagrams result from the analysis of social and system actors, as well as
of their goals and dependencies for goal achievement as shown in Fig. 8. An actor has
strategic goals and intentionality and represents a physical agent (e.g., a person), or a
software agent as well as a role (abstract characterization of the behavior of an actor
within some specialized context) or a position (a set of roles, typically played by one
agent). An agent can occupy a position, while a position is said to cover a role. Actor
models are extended during the late requirements phase by adding the system as
another actor, along with its inter-dependencies with social actors. Actor models at
the architectural design level provide a more detailed account of the system-to-be
actor and its internal structure. This structure is specified in terms of subsystem
actors, interconnected through data and control flows that are modeled as
dependencies. A dependency between two actors indicates that one actor depends on
another in order to attain some goal, execute some plan, or deliver a resource. By
depending on other actors, an actor is able to achieve goals that it would otherwise be
unable to achieve on its own, or not as easily, or not as well.

Fig. 8. Actor Diagram in Tropos (taken from [33])

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 9

Goal and Plan models: Goal and plan models allow the designer to analyze goals
representing the strategic interests of actors and plans representing a way of a goal is
satisfied from the perspective of a specific actor by using three basic reasoning
techniques: means-end analysis refining a goal into subgoals in order to identify
plans, resources and soft goals that provide means for achieving the goal (the end);
contribution analysis pointing out goals that can contribute positively or negatively in
reaching the goal being analyzed, and AND/OR decomposition allowing to
combination of AND and OR decompositions of a root goal into sub-goals, thereby
refining a goal structure. Between two kinds of goals is distinguished, namely hard
goals and soft goals, the latter having no clear-cut definition and/or criteria as to
whether they are satisfied. Goal models are first developed during early requirements
using initially-identified actors and their goals.

Capability diagram: A capability, modeled either textually (e.g. as a list of
capabilities for each actor) or as capability diagrams using UML activity from an
agent’s point of view, represents the ability of an actor to define, choose and execute a
plan to fulfill a goal, given a particular operating environment. Starting states of a
capability diagram are external events, whereas activity nodes model plans,
transitions model events, and beliefs are modeled as objects. Each plan node of a
capability diagram can be refined by UML activity diagrams.

Agent interaction diagrams: Protocols are modeled using the Agent UML sequence
diagrams [1]

2.4 Prometheus

Similar to Tropos, Prometheus [37][36][35] is an iterative methodology covering the
complete software engineering process and aiming at the development of intelligent
agents using goals, beliefs, plans, and events, i.e. in particular BDI agents, resulting in
a specification which can be implemented with JACK [34]. The Prometheus
methodology covers three phases, namely those of System specification, architectural
design, and detailed design. Fig. 9 illustrates the Prometheus process [35].

Fig. 9. Prometheus process overview

www.manaraa.com

10 B. Bauer and J.P. Müller

In the following, we describe the three phases of the Prometheus methodology
according to [36], [35] .
System Specification: The System Specifications focuses on identifying the basic
functions of the system, along with inputs (percepts), outputs (actions) as well as their
processing (e.g. how are percepts to be handled and any important shared data sources
to model the system’s interaction with respect to its changing and dynamic
environment. To understand the purpose of a system, use case scenarios borrowed
from object-orientation with a slightly enhanced structure give a more holistic view
than the mere analysis of the system functions in isolation.
Architectural Design: The architectural design phase subsequent to system
specification determines which agents the system will contain and how they will
interact. The major decision to be made during the architectural design is which
agents should exist within the system. The key design artifacts used in this phase are
the system overview diagram tying together agents, events and shared data objects,
agent descriptions and the interaction protocols (based on Agent UML sequence
diagrams [1]) specifying fully the interaction between agents. Agent messages are
also identified, forming the interface between agents. Data objects are specified using
traditional object oriented techniques. Taken the examples from [35] the diagrams
look as illustrated in Fig. 10:

percept

incident

action

agent

data

protocol

protocol

with reply

message

message

with reply

event

capability plan

SA

CR

WM

DM

delay
notification

failed
arrival

customer
email

book order

book order

profile change

delayed delivery

delayed delivery

delivery problem send
email

order
stock

arrange
delivery

delivery
query

book query

Book
DB

Supplier
DB

Customer
DB

Transport
DB

bank
transaction

user
input

Fig. 10. Example of system overview diagram

Detailed design: The detailed design phase describes the internals of each agent
and how it will achieve its tasks within the overall system. The focus is on defining
capabilities (modules within the agent), internal events, plans and detailed data
structures. Outcomes from this phase are agent overview diagrams (see Fig. 11a)
providing the agent’s top-level capabilities, capability diagrams (see Fig. 11b),
detailed plan descriptors and data descriptions. Capabilities can be nested within
other capabilities; thus this model supports arbitrarily many layers in the detailed
design, in order to achieve an understandable complexity at each level. They are
refined until all capabilities are defined in terms of other capabilities, or (eventually)
in terms of events, data, and plans.

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 11

a)

E1

DB1

C1

E3

DB2

C2

b)

E1

E3

DB1

DB2

P1

E2

P2

P4

Fig. 11. Example of a) agent overview diagram, and b) capability overview diagram taken from [35]

2.5 MaSE

Multiagent Systems Engineering (MaSE) (we base our presentation on [24], for
details we refer to [25][26]) has been developed to support the complete software
development lifecycle from problem description to realization. It offers an
environment for analyzing, designing, and developing heterogeneous multi-agent
systems independent of any particular multi-agent system architecture, agent
architecture, programming language, or message-passing system It takes an initial
system specification, and produces a set of formal design documents in a graphical
style. In particular, MaSE offers the ability to track changes throughout the different
phases of the process. The MaSE methodology is heavily based on UML and the
RUP. The software development process is detailed in analysis and design. The
different models to be covered are:

Capturing Goals: In this phase, the initial requirements are transformed into a
structured set of system goals. A goal is always defined as a system-level objective.
Goals are identified by distilling the essence of the set of requirements and are then
analyzed and structured into a form that can be passed on and used in the design
phases. Therefore the goals are organized by importance in a goal hierarchy diagram.
Each level of the hierarchy contains goals that are roughly equal in scope and all sub-
goals relate functionally to their parent.

Applying Use Cases: Use cases are drawn from the system requirements as in any
UML analysis. Subsequently, sequence diagrams are applied to determine the
minimum set of messages that must be passed between roles. Typically, at least one
sequence diagram is derived from a use case.

Refining Roles: The roles and concurrent tasks are assigned from the goal hierarchy
diagram and the sequence diagrams. A role in MaSE is an abstract description of an
entity's expected function and encapsulates the system goals the entity is responsible
for. MaSE allows a traditional role model and a methodology-specific role model
including information on interactions between role tasks shown in Fig. 12.

www.manaraa.com

12 B. Bauer and J.P. Müller

Fig. 12. MaSE a) traditional role model and b) MaSE role model.

Creating Agent Classes: The agent classes are identified from component roles.
The result of this phase is an agent class diagram depicting agent classes and the
conversations between them. .

Constructing Conversations: A MaSE conversation defines a coordination protocol
between two agents. Specifically, a conversation consists of two communication class
diagrams, one each for the initiator and responder. A communication class diagram is
a pair of finite state machines that define the conversation states of the two participant
agent classes.

Assembling Agent Classes: the internals of agent classes are created based on the
underlying architecture of the agents, like BDI, re-active agents, etc.

System Design: This model takes the agent classes and instantiates them as actual
agents. It uses a Deployment Diagram to show the numbers, types, and locations of
agents within a system.

2.6 PASSI

PASSI (Process for Agent Societies Specification and Implementation) [16][17] is an
agent-oriented iterative requirement-to-code methodology for the design of multi-
agent systems mainly driven from experiments in robotics. The methodology
integrates design models and concepts from both object oriented software engineering
and artificial intelligence approaches. PASSI is supported by a Rational Rose plug-in
to have a dedicated design environment. In particular, automatic code generation for
the models is partly supported and a focus lies on patterns and code reuse. We base
our survey on [17].

The PASSI methodology consists of five models (System Requirements, Agent
Society, Agent Implementation, Code Model and Deployment Model) which include
several distinct phases as described in the following.

System Requirements Model: The System Requirements model is obtained in
different phases: The Domain Description Phase results in a set of use case diagrams
where scenarios are detailed using sequence diagrams. The next phase, namely the
Agent Identification, defines, based on use cases, packages where the functionality of
each agent is grouped and activity diagrams for the task specification of this agent.
I.e., in contrast to most of the agent-oriented methodologies agents are identified
based on their functionality and not on their roles. The Role Identification Phase is a
functional/behavior description of the agents as well as a representation of its
relationships to other agents described by a set of sequence diagrams. Roles are

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 13

viewed as in traditional object-oriented approaches. One activity diagram is drawn for
each agent in the Task Specification Phase where each diagram is divided into two
segments, one dealing with the tasks of an agents and one with the tasks for the
interacting agent.

Agent Society Model: The agent society model is derived in the phases: Ontology
Description describes the agent society or organization from a ontological point of
view. Therefore two diagrams are introduced, the Domain Ontology Description and
Communication Ontology Description usually presented using Class Diagrams and
XML Schema for textual representation. The Role Description Phase models the life
of the agents looking at its roles, therefore social or organizational roles and
behavioral roles, represented by class diagrams where roles are classes grouped in
packages representing the agents. In particular role changes can be defined. Roles are
obtained by composing several tasks (roles are based on the functionality of an
agent!). A part of such a diagram is shown in Fig. 13.

Fig. 13. Excerpt from PASSI role diagram

Agent Implementation Model: This model covers the Agents Structure Definition
and the Agents Behavior Description Phases, describing respectively the multi-agent
level represented by classes where attributes are the knowledge of the agent, methods
are the tasks of an agent and relationships between agents define the communication
between them; and the single-agent level defines one single class diagram for each
agent, describing the complete structure of an agent with its attributes and methods. In
particular, the methods needed to register the agent and for each task of the agent is
represented as a class.

Code Model: Based on the FIPA standard architecture standard code pieces are
available for re-use and therefore automatic code generation from the models is partly
supported.

Deployment Model: UML deployment diagrams are extended to define the
deployment of the agents and in particular to specify the behavior of mobile agents.

3 Modeling Notations Based on UML

The UML modeling notation is applied in various papers for the modeling of different
aspects of agent-based software systems. While some approaches (e.g., [9], [10]) use
plain UML 1.4 as a base notation for agent-based software development, there is a
shared understanding, that UML as presented in version 1.4 is not sufficient for
modeling agent-based systems [11]. The upcoming UML 2 standard will address

www.manaraa.com

14 B. Bauer and J.P. Müller

some current limitations and some parts of UML extension for agent-based systems
will be taken into consideration in UML 2. Therefore in the following we will only
present those extensions of UML 1.4, for which to our knowledge no updated version
based on UML 2 is available.

3.1 Interaction Protocols

One of the first extensions to UML, in particular sequence diagrams were proposed in
[12][1]. This notation was also applied as a basis for the specification of FIPA
interaction protocols. In the meantime, this description was adapted to UML 2. An
agent interaction protocol [13] is then represented as a sequence diagram as shown in
Fig. 14 (taken from that source):

Fig. 14. FIPA Iterated Contract Net Protocol

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 15

In the contract net protocol, one agent takes the role of manager, e.g. a customer.
The manager wishes to have some task performed by one or more other agents e.g.
order some items, and further wishes to optimize a function that characterizes the task
e.g. price and time of good. The Customer solicits proposals from the order
acquisition by issuing a call for proposals (cfp), which specifies the task and any
conditions the manager (Customer) is placing upon the execution of the order. Agents
receiving the call for proposals are viewed as potential contractors, and are able to
generate proposals to perform the task, e.g. the ordering as propose acts. The
contractor’s proposal e.g. Order Acquisition includes the preconditions that the
contractor is setting out for the task, being the price and time when the order will be
done. Alternatively, the contractor may refuse to propose or may iterate the process
by issuing a revised cfp. The intent is that the Customer seeks to get better bids from
the Order Acquistion by modifying the call and requesting new (equivalently, revised)
bids. Once the Customer receives back replies from all of the Order Acquisition, it
evaluates the proposals and makes its choice of which agents will perform the task.
The process terminates when the Customer refuses all proposals and does not issue a
new call, accepts one or more of the bids, or the Order Acquisitions all refuse to bid.
The agents of the selected proposal(s) will be sent an acceptance message, the others
will receive a notice of rejection. The proposals are assumed to be binding on the
Order Acquisition, so that once the Customer accepts the proposal the Order
Acquisition acquires a commitment to perform the task. Once the Order Acquisition
has completed the task, it sends a completion message to the Customer.

3.2 Social Structures

Based on the emphasis on the correspondence between multi-agent systems and social
systems, Parunak and Odell [38] combine several organizational models for agents,
including AALAADIN, dependency theory, interaction protocols, and holonic
modeling, in a general theoretical framework, and show how UML can be applied and
extended to capture constructions in that framework. Parunak and Odell’s model is
based on the following artifacts: roles: They assume, that the same role can appear in
multiple groups, if they embody the same pattern of dependencies and interactions. If
an agent in a group holds multiple roles concurrently, it may sometimes be useful to
define a higher-level role that is composed of some of those more elementary roles;
environments environment are not only passive communications framework and
everything of interest is relegated to it, but actively provides three information
processing functions; It fuses information from different agents passing over the same
location at different times; it distributes information from one location to nearby
locations; it provides truth maintenance by forgetting information that is not
continually refreshed, thereby getting rid of obsolete information; Groups: groups
represent social units that are sets of agents associated by a common interest, purpose,
or task. Groups can be created for three different reasons, i.e.: (i) for achieving more
efficient or secure interaction between a set of agents (intra-group associations); (ii)
for taking advantage between the synergies between a set of agents, resulting in an
entity (the group) that is able to realize products, services, or processes that no
individual by itself would be capable of (group synergies); and (iii) establishing a

www.manaraa.com

16 B. Bauer and J.P. Müller

group of agents that interacts with other agents or groups in a coherent way, e.g., to
represent a shared position on a subject (inter-group associations).

The conceptual model of Parunak and Odell’s approach is illustrated in Fig. 15. In
[38], the authors provide some examples for modeling social agent environments,
namely a terrorist organization and its relationship to a weapons cartel. Groups are
modeled by class diagrams and swimlanes as shown in Fig. 16, denoting that the
Terrorist Organization involves two roles, Operative and Ringleader, where the
Ringleader agent coordinates Operative agents.

Fig. 15. Conceptual model of Parunak and Odell’s approach

The second swimlane is based on agent instances, e.g. agent A plays the roles of
Operative, Customer, and Student (expressed in b).

a) b)

Fig. 16. a) Swimlanes as groups; b) class diagrams defines roles

Sequence diagrams are used to show roles as patterns of interactions; class
diagrams model the kinds of entities that exist in a system along with their
relationships, whereas sequence diagrams model the interactions that may occur
among these entities. Fig. 17a) depicts the permitted interactions that may occur
among Customer, Negotiator, and Supplier agents for a weapons procurement

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 17

negotiation. Fig. 17b) shows an activity graph modeling groups of agents as agents. In
this way, the kinds of dependencies are expressed that are best represented at a group
level.

a)

b)
Fig. 17. a) Sequence diagram depicting an interaction protocol b) object-flow activity graph
specifies roles as patterns of activities

3.3 Agent Classes

To our knowledge, basing agent classes on UML class diagrams was so far only
considered by [15] and [14], with the notable exception of [43], where Wagner
presents an UML profile for an agent-oriented modeling approach called an Agent-
Object-Relationship modeling language (AORML). AORML can be viewed as an
extension of UML covering (among others) Interaction Frame Diagrams describing
the action event classes and commitment/claim classes determining the possible
interactions between two agent types (or instances), Interaction Sequence Diagrams
depicting prototypical instances of interaction processes, and Interaction Pattern
Diagrams for representing general interaction patterns. The latter [14] is currently
revisited within FIPA; an adapted version will be available by the end of 2003.
Following [14] a distinction is made between an agent class, defining a blueprint for
and the type of an individual agent, and between individual agents (being instances of
an agent class). An agent class diagram shown in Fig. 18 specifies agent classes.

[14] states that usual UML notation with stereotypes can be used to define such an
agent class, but for readability reasons the above notation was introduced:
Agent Class Descriptions and Roles: As we have seen agents can satisfy distinguished
roles in most of the methodologies. The general form of describing agent roles in
Agent UML [12] is

instance-1 ... instance-n / role-1 ... role-m : class
denoting a distinguished set of agent instances instance-1,..., instance-n satisfying the
agent roles role-1,..., role-m with n, m ≥ 0 and class it belongs to. Instances, roles or
class can be omitted, for classes the role description is not underlined.

State description: A state description is similar to a field description in class
diagrams with the difference that a distinguished class wff for well-formed formula for
all kinds of logical descriptions of the state is introduced, independent of the

www.manaraa.com

18 B. Bauer and J.P. Müller

underlying logic. This extension allows the definition of e.g. BDI agents. Beyond the
extension of the type for the fields, visibility and a persistency attributes can be added
(denoted by the stereotype <<persistent>>) to allow the user agent to be stopped and
re-started later in a new session. Optionally the fields can be initialized with some
values. In the case of BDI semantics three instance variables can be defined, named
beliefs, desires, and intentions of type wff. Describing the beliefs, desires, and
intentions of a BDI agent. These fields can be initialized with the initial state of a BDI
agent. The semantics state that the wff holds for the beliefs, desires, and intentions of
the agent. In a pure goal-oriented semantics two instance variables of type wff can be
defined, named permanent-goals and actual-goals, holding the formula for the
permanent and actual goals. Usual UML fields can be defined for the specification of
a plain object oriented agent, i.e. an agent implemented on top of e.g. a Java-based
agent platform. However in different design stages different kinds of agents can be
appropriate, on the conceptual level BDI agents can be specified implemented by a
Java-based agent platform, i.e. refinement steps from BDI agents to Java agents are
performed during the agent development.

agent-class-name / rolename1, rolename-2, ...

state-description

actions

methods

capabilities, service description, supported
protocols

[constraint] society-name

agent-head-
automata-name

CA-1 /
protocol

CA-2 /
protocol

not-
understooddefault

CA-2 /
protocol

CA-1 /
protocol

 for short, e.g.

IT
RPAgent

IT
Monitoring

Agent

Fig. 18. Agent class diagram and its abbreviations

Actions: Pro-active behavior is defined in two ways, using pro-active actions and
pro-active agent state charts. The latter one will be considered later. Thus two kinds
of actions can be specified for an agent: pro-active actions (denoted by the stereotype
<<pro-active>>) are triggered by the agent itself, if the pre-condition of the action
evaluates to true. re-active actions (denoted by the stereotype <<re-active>>) are
triggered by another agent, i.e. receiving a message from another agent. The
description of an agent's actions consists of the action signature with visibility

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 19

attribute, action-name and a list of parameters with associated types. Pre-conditions,
post-conditions, effects, and invariants as in UML define the semantics of an action.

Methods: Methods are defined as in UML, eventually with pre-conditions, post-
conditions, effects and invariants.

Capabilities: The capabilities of an agent can be defined either in an informal way
or using class diagrams e.g. defining FIPA-service descriptions.

Sending and Receiving of Communicative Acts: Sending and receiving
communicative acts characterize the main interface of an agent to its environment. By
communicative act (CA) the type of the message as well as the other information, like
sender, receiver or content in FIPA-ACL messages, is covered. It is assumed that
classes and objects represent the information about communicative acts. The

incoming messages are drawn as

C A - 1 /
p r o to c o l

 and the outgoing messages are drawn

as

C A - 1 /
p r o t o c o l

. The received or sent communicative act can either be a class or a
concrete instance. The notation CA-1 / protocol is used if the communicative act of
class CA-1 is received in the context of an interaction protocol protocol. In the case of
an instance of a communicative act the notation CA-1 / protocol is applied. As
alternative notation protocol[CA-1] and protocol[CA-1] can be used. The context /
protocol can be omitted if the communicative act is interpreted independent of some
protocol. In order to react to all kinds of received communicative acts, we use a
distinguished communicative act default matching any incoming communicative act.
The not-understood CA is sent if an incoming CA cannot be interpreted.

Matching of Communicative Acts: A received communicative act has to be
matched against the incoming communicative acts of an agent to trigger the
corresponding behavior of the agent. The matching of the communicative acts
depends on the ordering of them, namely the ordering from top to bottom, to deal with
the case that more than one communicative act of the agent matches an incoming
message. The simplest case is the default case, default matches everything and not-
understood is the answer to messages not understood by an agent. Since instances of
communicative acts are matched, as well as classes of communicative acts, free
variables can occur within an instantiated communicative act. This matching is
formally defined in [14].

3.4 Ontologies

As we have already noticed e.g., in PASSI, several research approaches are dealing
with the definition of ontologies using UML class diagrams [19][20], not only from
the agent-oriented research community but also from the Semantic Web community
[17] [22]. Bergenti et al. [19] take a pragmatic view an ontology definition applying
UML class diagrams as shown in Fig. 19, defining the entities and on the other relating
it to specific agents.

Cranefield et al. use UML to define agent communication languages (ACL) and
content languages, like an object-oriented implementation of the FIPA ACL or FIPA
SL [21], see also Fig. 20. They also apply UML for ontology definition and rely
description logic with UML in [20].

www.manaraa.com

20 B. Bauer and J.P. Müller

In [22] an extension of UML is defined to cover DAML defining a high-level
mapping between UML and DAML, e.g. Ontologies are viewed as packages, classes
as classes, properties as attributes, associations and classes.

Fig. 19. UML-based ontology definition

Fig. 20. Excerpt of object-oriented design of FIPA ACL/SL

3.5 Goals and Plans

Goals and plans are described by state charts or activity diagrams in several
methodologies (see above). In [23] Huget uses UML 2.0 activity diagrams for the
descriptions of goals and plans. We present here his example of a goal diagram
corresponding to the interaction between the customer and the order acquisition (see
Fig. 21).

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 21

Fig. 21. Supply Chain Management scenario as Activity Diagram

The goal diagram expresses the following. Customer first performs the action
Order Item. This ordered item is received by the Order acquisition. The Order
acquisition checks if the ordered item is on catalogue (action Browse catalogue). If
the ordered item is off catalogue, then the following of the actions is on A3. This
characteristic only changes how the item is produced and priced. If the ordered item is
in the catalogue, the order acquisition checks the price and the delay (action Verify
price and delay). If the proposal made by the customer cannot be processed for this
delay and price then the order acquisition goes to E. After several actions, the order
acquisition comes back to B to make a counter-proposal which is accepted or not by
the customer. If the customer accepts the counter offer, next action is to write an
invoice (action Write invoice). If the customer does not accept, it can make another
proposal. The following is as defined above. Finally, after writing the invoice, the
customer has two choices: either accepting the order (action Buy item) or canceling
the order (action Cancel order).

4 Conclusions and Further Research

In this paper we surveyed a number of important research contributions in the area of
methodologies and notations for the development of agent-based systems based on
UML. The general approach of building agent-based features on top of an established
object-oriented model introduces a number of trade-offs, in particular regarding the
natural design of agent-based systems. Yet, the large advantage of these approaches is
that they fit easier into the object-oriented conception, and that it is relatively easy to
present higher-quality tools by extending existing object-oriented tools. It appears that
while objects and agents are certainly different notions (see e.g., the discussion in
[41]), agent-oriented software engineering can greatly benefit from OO technologies
and approaches. In particular, agent-oriented approaches are also suitable for areas

3 There exists only one matching for a letter: one encircled letter A with incoming arrow on

this figure and one encircled letter A with outgoing arrow defined elsewhere

www.manaraa.com

22 B. Bauer and J.P. Müller

where object-oriented modeling has shortcomings. Here the abstractions inherent to
agent-oriented software engineering can help us to overcome the limitations of the
object-oriented approach.

Acknowledgement. We would like to thank the AOSE chairs for the invitation to
contribute to this workshop proceedings. Moreover we want to thank all the people
involved within FIPA TCs dealing with methodologies and notation for preparing an
excellent collection of state-of-the-art paper on the AUML web-site.

References

[1] Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying
Multiagent Software Systems, International Journal on Software Engineering and
Knowledge Engineering (IJSEKE), Vol. 11, No. 3, pp.1–24, 2001 Engineering, 2001.

[2] Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modeling Technique for Systems
of BDI Agents, in Proceedings of the Seventh European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW 96), LNAI 1038, Springer,
1996.

[3] Kinny, D. and Georgeff, M.: A design methodology for BDI agent systems. Technical
Report 55, Australian Artificial Intelligence Institute, Melbourne, Australia, 1995.

[4] Kinny, D. and Georgeff, M: Modelling techniques for BDI agent systems. Technical
Report 54, Australian Artificial Intelligence Institute, Melbourne, Australia, 1995.

[5] Kinny, D. and Georgeff, M: Modelling and Design of Multi-Agent Systems, Proc. ATAL
96, 1996.

[6] MESSAGE web site: http://www.eurescom.de/public/projects/P900-series/p907/
[7] Giovanni Caire , Wim Coulier , Francisco Garijo, Jorge Gomez, Juan Pavon , Philippe

Massonet, Francisco Leal, Paulo Chainho , Paul Kearney, Jamie Stark, Richard Evans ,
Agent Oriented Analysis using MESSAGE/UML, Proceedings AOSE 2001, Springer
2001.

[8] Elisabeth A. Kendall, Margaret T. Malkoun, and Chong Jiang. A methodology for
developing agent based systems for enterprise integration. In D. Luckose and Zhang C.,
editors, Proceedings of the First Australian Workshop on DAI, Lecture Notes on Artificial
Intelligence. Springer-Verlag: Heidelberg, Germany, 1996.

[9] Jürgen Lind: Iterative Software Engineering for Multiagent Systems: The MASSIVE
Method. Springer, 2001

[10] Ralf Kühnel, Agentenbasierte Software - Methode und Anwendungen, Addison-Wesley,
2000.

[11] Bauer, B.; Bergenti, F., Massonet, Ph., Odell, J.: Agents and the UML: A Unified Notation
for Agents and Multi-Agent Systems, Proceeding AOSE 2001, Montreal, Springer, 2001.

[12] Bauer, B.; Müller, J. P.; Odell, J.: An Extension of UML by Protocols for Multiagent
Interaction, Proceeding, Fourth International Conference on MultiAgent Systems, ICMAS
2000, Boston, IEEE Computer Society, 2000.

[13] Marc-Philippe Huget (editor): FIPA-Modelling – Interaction Diagrams, first draft, online
available at www.fipa.org

[14] Bauer, B.: UML Class Diagrams Revisited in the Context of Agent-Based Systems, in
Proceedings AOSE 2001, Montreal, Springer, 2001.

[15] Wagner, G., The Agent-Object-Relationship Metamodel: Towards a Unified View of State
and Behavior., Technical Report, Eindhoven Univ. of Technology, Fac. of Technology
Management, May 2002.

www.manaraa.com

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 23

[16] PASSI website: www.csai.unipa.it/passi
[17] M. Cossentino, C. Potts: A CASE tool supported methodology for the design of multi-

agent systems, in Proc. The 2002 International Conference on Software Engineering
Research and Practice (SERP'02) Las Vegas (NV), USA, 2002.

[18] W3C Note NOTE-rdf-uml-19980804, available online at http://www.w3.org/TR/1998/
NOTE-rdf-uml-19980804/

[19] Federico Bergenti, Agostino Poggi: A Development Toolkit to Realize Autonomous and
Inter-operable Agents, in Proc. Autonomous Agents 2001, 2001.

[20] Stephen Cranefield, Stefan Haustein, Martin Purvis: UML-Based Ontology Modelling for
Software Agents.

[21] Stephen Cranefield, Martin Purvis: Generating ontology-specific content languages
[22] Baclawski, K., Kokar, M., Kogut, P., Hart, L., Smith, J., Holmes, W., Letkowski, J., and

Aronson M., "Extending UML to Support Ontology Engineering for the Semantic Web."
Proc. of the Fourth International Conference on UML (UML2001), Toronto, October 2001

[23] Marc-Philippe Huget: Representing Goals in Multi-Agent Systems, unpublished paper,
2003

[24] Mark F. Wood Scott A. DeLoach An Overview of the Multiagent Systems Engineering
Methodology, In: Proceedings of the First International Workshop on Agent-Oriented
Software Engineering, P. Ciancarini, M. Wooldridge, (Eds.) LNCS. Vol. 1957, Springer,
2001.

[25] Wood, M. F.: Multiagent Systems Engineering: A Methodology for Analysis and Design
of Multiagent Systems. MS thesis, AFIT/GCS/ENG/00M-26. School of Engineering,

[26] DeLoach, S. A., Wood M. F.: Multiagent Systems Engineering: the Analysis Phase.
Technical Report, Air Force Institute of Technology, AFIT/EN-TR-00-02, June 2000.

[27] Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia, John Mylopoulos , and Anna Perini.
TROPOS: An Agent-Oriented Software Development Methodology. Journal of
Autonomous Agents and Multi-Agent Systems. 2003. Kluwer Academic Publishers (to
appear).

[28] Ivar Jacobson, Grady Booch, James Rumbaugh: The Unified Software Development
Process, Addison Wesley, 1998.

[29] J. Mylopoulos, M. Kolp, and J. Castro. UML for agent-oriented software development:
The Tropos proposal. In Proc. of the 4th Int. Conf. on the Unified Modeling Language
UML'01, Toronto, Canada, Oct. 2001

[30] Tropos web site http://www.cs.toronto.edu/km/tropos/
[31] GRL web site: http://www.cs.toronto.edu/km/GRL/
[32] i* web site: http://www.cs.toronto.edu/km/istar/
[33] J. Castro, M. Kolp and J. Mylopoulos. Towards Requirements-Driven Information

Systems Engineering: The Tropos Project. Information Systems, Elsevier, Amsterdam,
The Netherlands, 2002.

[34] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents –
Components for Intelligent Agents in Java. Technical Report TR9901, AOS, January
1999. http://www.jackagents.com/pdf/tr9901.pdf.

[35] Lin Padgham and Michael Winikoff: Prometheus: A Methodology for Developing
Intelligent Agents, In: Proceedings of AOSE 2002, Springer, 2002.

[36] Prometheus home page: http://www.cs.rmit.edu.au/agents/SAC/methodology.shtml
[37] Lin Padgham and Michael Winikoff, Prometheus: A Pragmatic Methodology for

Engineering Intelligent Agents. In Proceedings of the workshop on Agent-oriented
Methodologies at OOPSLA 2002. November 4, 2002

[38] H. Van Dyke Parunak and James Odell. Representing Social Structures in UML, In:
Proceedings of AOSE 2001, Springer, 2001.

[39] Kennedy Carter eXecutable UML: http://www.kc.com/MDA/xuml.html
[40] Model-driven Architecture: http://www.omg.org/mda/

www.manaraa.com

24 B. Bauer and J.P. Müller

[41] Wooldridge, M.J. An introduction to multiagent systems. John Wiley & Sons, 2002.
[42] Bauer, B. and Müller, J.P.: Agent-Oriented Software Engineering: Methodologies and

Modeling Languages - A State of the Art Survey -, to be published as book chapter, 2003.
[43] Wagner, G., A UML Profile for External AOR Models in Proceedings AOSE 2002,

Springer, 2002
[44] Luck, M., McBurney P., and Preist, C., eds. Agent Technology: Enabling Enxt Generation

Computing. AgentLink, http://www.agentlink.org, 2003.

www.manaraa.com

Towards a Recursive Agent Oriented
Methodology for Large-Scale MAS

Adriana Giret and Vicente Botti

Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia, Spain

46020 Valencia, Spain
{agiret,vbotti}@dsic.upv.es

Abstract. Current business trends, policy markets, production require-
ments, etc., have created the need for integrating Multi Agent Systems
(MAS). In the agent-specialized literature, we have found very little work
about MAS methodologies that allow us to build MAS which is made
up of two or more MASs. We think that several difficult challenges for
automated systems can be tackled by giving full meaning to the MAS
concept: adopting a recursive definition of MASs. In this work we outline
the basis for a recursive agent oriented methodology for large-scale MAS.

1 Introduction

Nowadays arises the need to integrate pre-existent Multi Agent Systems (MAS)
in domains where these integration and/or cooperation are imposed by business
trends, policy markets, production requirements, etc. The question arises as to
whether a MAS can be a collection of several interacting MASs, a hierarchy, or
some other type of organization.

A large-scale MAS encompasses multiple types of agents and may, as well,
encompasses multiple MASs, each of them having distinct agency properties. A
large-scale MAS needs to satisfy multiple requirements such as reliability, se-
curity, adaptability, interoperability, scalability, maintainability, and reusability.
But, how can we specify and model the agency properties of a MAS made up
of others MASs? We believe that MAS have to integrate recursive aspects to be
able to comply with these requirements.

MAS offers powerful tools to realize complex problem spatialized solving or
simulations systems. Some of these problems present hierarchical and multi-
scale requirements and evolve in structured environments which posses recursive
properties. In the intelligent manufacturing field, the need for some kind of hi-
erarchical aggregation in real world systems has been recognized. These systems
have to remain readable while they are expanded in a wide range of temporal
and spatial scales. For example, a modern automobile factory, incorporates hun-
dreds of thousands of individual mechanisms (each of which can be an agent)
in hundreds of machines which are grouped in to dozens or more production
lines. Engineers can design, build, and operate such complex systems by shifting

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 25–35, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

www.manaraa.com

26 A. Giret and V. Botti

from the mechanism, to the machine or to the production line (depending on the
problem at hand) and by recognizing the agents of higher levels as aggregations
of lower-level agents. Also, in e-commerce applications, an enterprize is a legal
entity which is independent of the individual people whose are its employees and
directors.

In the agent-specialized literature, we have found very little work about
methodologies which allow us to carry out recursive and dynamic analysis, de-
sign, and implementation of MAS. Most of the current approaches start from
an atomic agent definition such as an indivisible entity and build MAS as com-
positions of interacting agents. Nevertheless, there are some works in which a
nested MAS structure is included. Parunak and Odell, in [1], proposed UML
conventions and AUML extensions to support nested agents’ groups. Wagner, in
[2], models an institutional agent which is made up of agents themselves.

In this work we try to define a set of concepts to help in the construction
of large-scale MASs. The aim of this paper is to introduce a recursive agent
model and an outline of a recursive MAS methodology. We are convinced that
several difficult challenges for automated systems may be tackled by giving full
meaning to the agent concept: adopting an abstract recursive agent definition.
To this end we present the definition for abstract recursive agents in section 2. In
section 3, we show an example of a large-scale MAS modelled as a recursive MAS.
In section 4 we introduce an outline of a recursive agent oriented methodology.
Finally we state our conclusions in section 5.

2 Abstract Recursive Agent

With a recursive approach to develop Multi Agent Systems as systems in
which their components may be MASs themselves, the idea is as follows [1].
When we begin to analyze a group of agents (MAS) A, we identify the agents
{a1, a2, ..., an} which execute certain functions. These agents may encapsulate
individual persons, physical, or software entities (agents). They may also be
other groups of MAS, say B, so we can have ai = Bi, which we treat as black
boxes. We can take this perspective as long as our analysis can ignore the internal
structure of the member groups (MAS). However, subsequent analysis generally
needs to ’open’ these black boxes and look inside them to see the agent com-
ponents and their corresponding functions; for example, when analyzing B we
have that B = {b1, b2, ..., bm}. At this point, we insist on identifying which of
B’s member agents is actually responsible for filling B’s role in A.

To support these ideas it seems appropriate to provide an abstract recursive
agent (A-Agent) definition which will allow us to build Multi Agent Systems.
This definition is based on the widely known agent definition of Wooldridge and
Jennings [3].

Definition 1. An A-Agent is a software system with a unique entity, which is
located in some environment, which as a whole, perceives its environment (en-
vironment sensitive inputs). From these perceptions, it determines and executes

www.manaraa.com

Towards a Recursive Agent Oriented Methodology for Large-Scale MAS 27

actions in an autonomous and flexible way - reactive and proactive. These ac-
tions allow the A-Agent to reach its goals and to change its environment. From
a structural point of view, an A-Agent can be an agent (atomic entity); or it can
be a Multi Agent System (with a unique entity) made up of A-Agents which are
not necessarily homogeneous.

An A-Agent is in a higher conceptual abstraction level than an agent. An
A-Agent can be seen as a MAS, an organization, a federation or an institution
with the added value that it can also be a composition of all this abstraction
models. Furthermore, when we define two interacting A-Agent we could also be
modelling two interacting organizations, federations, MAS or institutions. An
A-Agent will exist only at modelling stages, in the end (at coding stages) it will
be replaced possibly by a group of agents or also by a single agent.

Definition 2. A Multi Agent System is made up of two or more A-Agents which
interact to solve problems that are beyond the individual capabilities and individ-
ual knowledge of each A-Agent.

Definition 2 extends the traditional notion of MAS when indicating that a
MAS is made up of MASs. This will allow us to build systems in which the
building blocks are interacting MASs that work together to reach one or several
global goals (the global goal is the goal of the system as a whole).

From definition 1 we have:
- A-Agent of level 0 is an agent.
- A-Agent of level 1 is a traditional MAS.
- A MAS is an A-Agent.
- A-Agent of level n is a MAS made up of interacting MASs.

The recursive structure of an A-Agent can be represented in a graphical way
using UML as shown in Figure 1. This representation is similar to the one pre-
sented in [1] for the holonic perspective for agent oriented software engineering.
In fact, our A-Agent structural definition is inspired by holonic concepts [4,5].

Multiagent System Agent

+MAS

1..*

+Agent

2..n

A-Agent

Fig. 1. Abstract Recursive Agent

www.manaraa.com

28 A. Giret and V. Botti

Figure 1 shows that a MAS is made up of either: two or more agents or two
or more MASs.

In [6], we have also proposed a formalization of MAS behaviours in terms
of its constituent agent behaviour or MAS behaviour. In summary, the reactive
behaviour of a MAS is determined by its perception which is defined as the
union of the set of perceptions of its members, and by its actions, which in turn
are defined as the union of the group actions executed by its members and the
union set of the primitive actions carried out by each of its constituent entities.
The intentional behaviour of a MAS is determined by its goals. These goals are
defined as the union of the set of systems’ goal derived from congruent patterns
of interactions among its members and the set of joint goals of its constituent
entities.

3 A Large-Scale MAS as a Recursive MAS

One of the most difficult challenges for automated systems is scalability and
adaptation. In life systems there are many useful concepts, including examples
on how to scale up, evolve, adapt, interoperate, organize, and so on. Complex
and adaptive life systems are large, intricate and require active autonomous
entities. Life systems are recursive and they enable the construction of very
complex systems from more simple entities [5]. What about MASs? Are MAS
MASs arranged in clusters, a hierarchy, or some other type of organization? In
this section, we present an example in which the usefulness of our definition can
be observed to describing complex large-scale problems with multiple levels of
abstraction.

Let us suppose a Multinational company, called AG, which has different
National companies distributed among different countries. The objective is to
model the multinational as a MAS.

Each National company can be an A-Agent since it has got agenthood char-
acteristics. The National company is autonomous in its national environment;
it acts in the national market with its owns market and production rules. At
the same time, it must be able to interact with others National companies to
exchange materials, personnel, knowledge, etc. The National company, is also
governed by the rules and norms of the Multinational for its international rela-
tions (other National companies).

The international companies’ relationships define the rules, norms and poli-
cyies of the multinational. In Figure 2(a), geographical areas can be observed in
which the relationships among the national companies are narrower. In addition
the commercial agreements among the different countries define new interrela-
tion rules among the national companies of these zones. For example, in Europe,
the European Union countries are governed by certain standards and norms of
the community; and in South America the Southern Cone Common Market -
MERCOSUR (Paraguay, Argentina, Chile, Brazil, Uruguay and Bolivia) and
the countries of the Andean Community (Bolivia, Colombia, Ecuador, Peru and
Venezuela). The relationships of the countries of these markets with other coun-

www.manaraa.com

Towards a Recursive Agent Oriented Methodology for Large-Scale MAS 29

Canada

USA

Mexico

European
Community

South Africa
Australia

Rusia

China

Japan

Andean
Community

MERCOSUR

Canada

USA

Peru

Mexico

Bolivia

Brazil

Paraguay

Argentina

England

Spain

Portugal

Italy

France

South Africa
Australia

Rusia

China

Japan

(a) (b)

Fig. 2. Regional and National Companies of a Multinational Company.

tries or regional markets are managed by their local market rules. Each market
can be modeled as an A-Agent. This generalization is shown in Figure 2(b). It is
important to note that Bolivia, as a National Company, belongs to two Regional
Companies (MERCOSUR and the Andean Community).

Up to this point, we have identified 4 levels of abstractions (Figure 3(a)): the
Multinational company, the Regional companies, and the National companies.
We have been able to model the Multinational as a MAS, which is composed
by A-Agents that are related to each other with certain behavior patterns that
define the Multinational company. If the National companies will be made up of
agents (A-Agents of level 0), we can think of a National company as a traditional
MAS (A-Agent of level 1), the Regional companies as A-Agents of level 2 and
the Multinational as A-Agent of level 3.

Apart from modeling the outside relationships, if the designer’s interest is
also to model the internal structure of each National company, the National
company should be observed from inside. Inside each National company there
would be new distributed companies in different cities or with autonomy for
certain activities. In turn, each Local company is subordinated to the National
company and each National one to the Multinational. Thus we have a new level of
abstraction, the Local company as an A-Agent of level 1, the National company
as an A-Agent of level 2, the Regional company as an A-Agent of level 3 and
the Multinational as an A-Agent of level 4 Figure 3(b).

If the National company is not subdivided into city companies or autonomous
companies. Then the National company is a traditional MAS composed of na-
tional domain-specific agents (A-Agents of level 0), which are interrelated agents
and carry out specific functions. These national domain-specific agents define the
services provided by the National company inside the country and outside the
country. This very same analysis should be made for each Local company until
we reach the agents, which define and implement the company as a whole. In
summary, the final result of the analysis should be similar to Figure 3(c). In

www.manaraa.com

30 A. Giret and V. Botti

Multinational

Regional National

11

1

A-Agent(Level 1)

A-Agent(Level 3)

A-Agent(Level 2)

Multinational

Regional National

11

1

Local

1

0..*

A-Agent(Level 2)

A-Agent(Level 1)

A-Agent(Level 4)

A-Agent(Level 3)

(a)

(b)

Multinational

Regional National

11

1

Local

1

0..*

Agent

Agent

1*

1
*

A-Agent(Level 2)

A-Agent(Level 1)

A-Agent(Level 4)

A-Agent(Level 3)

(c)

A-Agent(Level 0)

A-Agent(Level 0)

Fig. 3. Different levels of abstraction of the Multinational Company.

Figure 3(c), it can be observed that the National company is composed of zero
or more Local companies, and each Local company, in turn, is an A-Agent of
level 1.

Again, the Multinational can be considered from outside as an A-Agent, since
it is located in an environment, the world market; it is autonomous; it has its
own economic and market policies; it is social, i.e. it interacts with other entities
for purchasing, selling, recruiting, leasing, etc.; it is pro-active, since for example
according to the world market trends it is able to modify its current market
policies, etc.

4 Recursive Agent Oriented Methodology

In this section we will introduce an outline of a recursive agent oriented method-
ology. This methodology will help us in the construction of MAS made up of
pre-existing MASs or MAS made up of interacting MASs emerged from groups of
agents which have close interactions and which implement a well defined func-
tionality. As a result this group of close agents can be encapsuled as a new
MAS (A-Agent) and hence modeled and implemented as an entity with its owns
characteristics.

The recursive agent oriented methodology tries to reduce the complexity
of large-scale MAS, dividing the domain problem in simpler sub-problems and

www.manaraa.com

Towards a Recursive Agent Oriented Methodology for Large-Scale MAS 31

considering every sub-problem as an A-Agent. Every such A-Agent can in turn
be decomposed in simpler interacting A-Agents. Until we reach an abstraction
level in which there is no more subdivision, that is all the constituent members
of the MAS (A-Agent) are agents. We can think of the methodology as a MAS-
driven methodology.

The recursive agent oriented methodology models each MAS dividing it in
more concrete aspects that form different views of the system. This idea al-
ready appears in the work of Kendall [7], MAS-CommonKADS [8], and later in
GAIA [9]. The way in which the views are defined is inspired by INGENIAS
methodology [10].

To describe a MAS, the developer will use the following models:

– A-Agent Model: Describes agents and A-Agents, their task, goals, initial
mental state, and played roles. Moreover, these models are used to describe
intermediate states of agents and A-Agents. These states are presented us-
ing goals, facts, tasks, or any other system entity that helps in its state
description. The constructs added to the INGENIAS notations for A-Agent
and its associated abstract-tasks, abstract-goals and abstract-mental state
are depicted in Figure 4. In contrast to INGENIAS in our approach a group
(as well as an organization) of agents -an A-Agent- executes abstract-task,
has abstract-goals and abstract-mental states. An A-Agent may play a role,
but it can not execute task, can not have goals and mental states. All these
abstracts entities have to be implemented by real entities. That is, for each A-
Agent identified at every development step, there will be a group of agents
that will implement the corresponding functionality, will execute the cor-
responding task, will have the corresponding goals and mental states. An
abstract task will be implemented by a work flow. An abstract goal will
possibly be replaced by a conjunction of goals or by a common goal and so
on.

A

A-Agent

A

Abstract Goal

A

Abstract Task

Abstract Belief

Fig. 4. Abstract Notations for the A-Agent Model.

In this work we focus on the A-Agent meta model. To define the A-Agent
meta-model we add the gray entities and the bold lines identified in Figure
5 to the agent meta-model of INGENIAS. Following INGENIAS we use
GOPRR (Graph, Object, Property, Relationship, and Role)[11] primitives
in UML notation.

www.manaraa.com

32 A. Giret and V. Botti

<<Object>>

Autonomous Entity

<<Object>>

Organization

<<Object>>

Agent

<<AbstractObject>>

A-Agent

<<Relationship>>

A-Pursues

<<AbstractObject>>

Abstract-Goal

<<AbstractObject>>

Control Abstract-
Mental Entity

<<Relationship>>

Belongs_To

<<Relationship>>

Pursues

<<Role>>

Pursues

<<Relationship>>

Plays

<<Object>>

Rol

<<Object>>

Goal

<<Role>>

A-Pursues

<<Relationship>>

A-Plays

<<Object>>

A-Rol

<<Relationship>>

Implements

<<Object>>

Task

<<Role>>

Responsible

<<Relationship>>

Responsible

<<AbstractObject>>

Abstract-Task

<<Role>>

A-Responsible

<<Relationship>>

A-Responsible

<<Relationship>>

Implements

<<Object>>

Control Mental
Entity

<<Object>>

Mental Entity
<<AbstractObject>>

Information Abstract-
Mental Entity

<<Role>>

A-Has

<<Relationship>>

A-Has

<<Object>>

Information Mental
Entity

<<Role>>

Has

<<Relationship>>

Has

<<Object>>

Beliefs

<<Object>>

Event

<<Object>>

Fact

<<AbstractObject>>

Abstract-Beliefs

<<Relationship>>

Implements

Fig. 5. Main Entities in the A-Agent meta-model.

– Interaction model: Describes how interaction among agents and A-Agents
takes place. Each interaction declaration includes involved actors, goals pur-
sued by interaction, and a description of the protocol that follows the in-
teraction. Figure 6 depicts the abstract interaction notations. An abstract
interaction is an interaction in which at least one of the speakers is an A-
Agent.

– Task-goals model: Describes relationships among goals and tasks, goal
structures, and task structures. It is also used to express which are the
inputs and outputs of the tasks and what are their effects on environment

www.manaraa.com

Towards a Recursive Agent Oriented Methodology for Large-Scale MAS 33

A A A

Two speakers are A-Agents One speaker is A-Agent

Fig. 6. Abstract Interaction Notation.

or on A-Agent’s mental state. This model describes also the subdivision of
the abstract task, identified in the A-Agent model, into a set of tasks.

– Organization model: Describes how system components (agents, A-
Agents, roles, resources, and applications) are grouped together, which are
executed in common, which goals they share, and what constraints exists in
the interaction among agents and among A-Agents.

– Environment model: Defines agent’s and MAS’s perception in terms of
existing elements of the system.

These models will help in the modelling of MASs of any level of abstraction
(that is a conventional MAS -level 1- made up of agents, a MAS of level 2 made
up of MAS of level 1, and so on). In every model the definition of the MAS
behaviour is carried out following the work presented in [6].

The software development process guided by this methodology will be a re-
cursive, incremental and concurrent MAS driven process, see Figure 7. It will
have as many iterations as levels of abstractions are identified. The result of each
iteration will be a MAS of level n in which its structure and functionality are
defined in terms of the previous models. In each new iteration there will be as
many concurrent processes as non defined MASs of level n − 1 of the previous
iteration (because, we can have pre-existing MAS of level n − 1). Each iteration
will be a recursive, incremental and concurrent process.

Each iteration will be conducted in the following way. In the analysis phase,
organization models will be produced to sketch how the MAS looks like. In this
step, we can identify potential constituent A-Agents (that is, group of agents
with close interaction, with an identified functionality or goal, in which every
member interacts to solve some problem, and with self-regulating rules of ac-
tions) or pre-existing constituent MASs. The models obtained in this phase will
be refined later to identify common goals and relevant tasks to be performed
by each A-Agent (task-goal model and environmental model). More details will
be added specifying A-Agent interactions with interactions models and environ-
mental models, and, as a consequence, refining A-Agents’s mental state with
A-Agent models. For each emerged MAS a new process is started, until we reach
a step in which there are no more non specified MASs (A-Agents of level > 0).

www.manaraa.com

34 A. Giret and V. Botti

Level 0…..LEVEL n-3LEVEL n-2LEVEL n-1LEVEL n

A-Agent
Model

Task-goal
Model

Environment
Model

Interaction
Model

Organization
Model

Fig. 7. Software Development Process.

5 Conclusion

In this work, we have presented a recursive approach to develop large-scale MASs
as systems in which their components may be MASs themselves. We have pre-
sented in section 3 an example of a complex system modeled as a recursive MAS.
In this example we have shown the advantages of modeling a large-scale MAS
as a recursive MAS. Abstracting away from the complexity of the problem and
focusing at each level in the interactions and the behaviour of each constituent
entity.

In section 4, we have illustrated an outline of a recursive, incremental and
concurrent agent oriented methodology. The recursive methodology models each
MAS dividing it in more concrete aspects that form different views of the system.
The way in which the views are defined is based in INGENIAS methodology [10].
We have presented a sketch of the A-Agent meta-model. The software process
will have as many iterations as levels of abstractions are identified. The result of
each iteration will be a MAS of level n in which its structure and functionality
are defined in terms of: A-Agent models, Task-goal models, Interaction models,
Organization models and Environment models. In each new iteration there will
be as many concurrent processes as non defined MASs of level n − 1 of the
previous iteration (because, we can have pre-existing MAS of level n − 1). Each
iteration will be a recursive, incremental and concurrent process.

This paper is a preliminary report of our research. There are a lot of open
problems. In [6], we pointed out a definition of MAS’ behaviour in terms of its
constituent members in a top-down fashion. We also need to formalize it in a

www.manaraa.com

Towards a Recursive Agent Oriented Methodology for Large-Scale MAS 35

bottom-up way to deal with the definition of the behaviour of MAS’ emerged
from pre-existing agents. We have to complete the definition of the four models
and meta-models to comply with the recursive properties in A-Agent structures.
We have to formalize the data flows relations among the four models. There is
no CASE tool to help in the software recursive process.

References

1. Parunak, V.D., Odell, J.: Representing social structures in UML. In Agent-
Oriented Software Engineering II, M. Wooldridge, G. Weiss, and P. Ciancarini,
eds. Springer Verlag (2002) 1–16

2. Wagner, G.: Agent-oriented analysis and design of organizational information sys-
tems. in J. Barzdins and A. Caplinskas (Eds.), Databases and Information Systems.
Kluwer Academic Publishers. (2001) 111–124

3. Wooldridge, M., Jennings, N.R.: Intelligent agents - theories, architectures, and
languages. Lecture Notes in Artificia Intelligence, Springer-Verlag. ISBN 3-540-
58855-8 890 (1995)

4. HMS, P.R.: HMS Requirements. HMS Server, http://hms.ifw.uni-hannover.de/
(1994)

5. Koestler, A.: The Ghost in the Machine. Arkana Books (1971)
6. Giret, A., Botti, V.: Recursive agent. In Proceedings of Iberagents 2002, Agent

Technology and Software Engineering (2002)
7. Kendall, E.: Developing agent based systems for enterprise integration. IFIP

Working Conference of TC5 Special Interest Group on Architectures for Enterprise
Integration (1995)

8. Iglesias, C., Garijo, M., Gonzalez, J., Velasco, J.: Analysis and design of multi agent
systems using MAS-CommonKADS. In Singh, M. P., Rao, A., and Wooldridge,
M.J. (eds.) Intelligent Agentd IV LNAI, Springer Verlag 1365 (1998)

9. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-
oriented analisys and design. Journal of Autonomous Agents and Multi-Agent
Systems 15 (2000)

10. Gomez, J., Fuentes, R.: Agent oriented software engineering with INGENIAS.
In Proceedings of Iberagents 2002, Agent Technology and Software Engineering
(2002)

11. Lyytinen, K.S., Rossi, M.: METAEDIT+ - a fully configurable multi user and
multi tool CASE and CAME environment. Springer Verlag LGNS 1080 (1999)

www.manaraa.com

Agent-Oriented Modeling by Interleaving
Formal and Informal Specification

A. Perini1, M. Pistore2,1, M. Roveri1, and A. Susi1

1 ITC-irst, Via Sommarive, 18, I-38050 Trento-Povo, Italy
{perini,roveri,susi}@irst.itc.it

2 Department of Information and Communication Technology
University of Trento, via Sommarive 14, I-38050 Trento-Povo, Italy

pistore@dit.unitn.it

Abstract. The goal of this paper is to discuss possibilities of inter-
mixing formal and informal specification in order to guide and support
the conceptual modeling process in software development. We sketch
a framework based on an agent-oriented methodology that provides a
modeling language which allows for the definition of both informal and
formal specification. We show how formal techniques can be used to
guide and support the analyst while building and refining a conceptual
model. Examples of its applications are discussed, with reference to the
decision making process undertaken by the analyst when performing a set
of activities relevant for requirements engineering, such as requirements
elicitation and refinement, user validation of requirements specification,
or management of requirements evolution. A case study taken from a
technology transfer project in the agricultural domain is used to illustrate
the approach.

1 Introduction

In the last years, a considerable effort in defining agent-oriented approaches
to software development is going on [5,12,23]. The main reason for this can
be drawn back to the recognition that the agent paradigm, beside providing a
usefull technology to build software systems with an open architecture, offers
appropriate abstractions for specifying and designing critical properties of these
system, such as the dynamic evolution of their architecture and the interaction
protocols of system components.

Most of the proposed methodologies adopt visual modeling as a core process,
according to a best practice in structured Object Oriented software development
processes [15], as well as to the ideas proposed by the Agile software development
approaches [1].

The usage of visual modeling languages in the software development process
offers advantages such as that of providing an effective communication frame-
work for different stakeholders of the process. For instance, a use-case model can
be used to discuss system requirements with the users, or a structural pattern

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 36–52, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

www.manaraa.com

Agent-Oriented Modeling by Interleaving Formal and Informal Specification 37

allows the analyst to detect and discuss with the user inconsistencies emerg-
ing from the model, as proposed in [8]. Nevertheless, visual modeling languages
which lack a formal definition of their semantic, can lead to subjective models,
which can hardly be refined in a straightforward way into a system design. More-
over, a typical question when building a conceptual model is: “when can I stop
refining it?” This weakness is usually addressed by structured methodologies,
which provides guidelines for the analyst and for the designer in building, refin-
ing and documenting the process’ artifacts that are based on conceptual models,
e.g., [15].

Formal specification languages solve some of the weaknesses of visual model-
ing languages, specifically, they permit to define models with a precise semantics,
and facilitate their transformation into system designs. However, writing formal
specifications usually requires strong skills, and formal specifications are often
very ineffective for discussing with the stakeholders. Moreover, the formaliza-
tion “a posteriori” of the visual languages provided by the conceptual modeling
frameworks is not at all an easy task, due to the ambiguities in the interpretation
of the graphical notations.

The basic idea discussed in this paper concerns the possibility to exploit
formal techniques to guide and support the analyst while building and refining
a conceptual model. In particular we will focus on the decision making pro-
cess undertaken by the analyst while performing a set of activities, relevant for
requirements engineering, such as requirements elicitation and refinement, or
user validation of requirements specification. We will also analyze how results
of deductive reasoning procedures run on a formal specification can support the
analyst’s decisions. Our claim is that, if the diagrammatic models are equipped
with a formal semantics, then only a limited formalization effort is necessary to
exploit formal techniques. Moreover, the diagrammatic notations make it pos-
sible to interpret the models in an informal way, for instance when discussing
with the stakeholders.

In our approach we refer to the Tropos methodology [3,19], an agent oriented
software development methodology which provides a conceptual modeling lan-
guage that can be used both to build an informal specification or a formal one [9,
11]. It is this common conceptual model that allows for the formal interpreta-
tion of the diagrammatic models that we have described above. Tropos proved
to be effective especially in domain modeling and in system requirements analy-
sis, early stages activities in the software development process where we intend
to focus on as a starting point. Our long term objective is that of providing
a tool that supports the analyst and the designer that use informal modeling,
in performing the deductive reasoning on a formal specification which has been
automatically derived from the informal model.

The paper is structured as follows. Section 2 recalls the basic features of con-
ceptual modeling in Tropos and how to build informal and formal specification.
Section 3, presents our approach to interleaving informal and formal specifica-
tion with reference to specific requirements engineering activities. Related works

www.manaraa.com

38 A. Perini et al.

are discussed in Section 4. Finally, conclusions and future work are presented in
Section 5.

2 Background

The Tropos methodology [3,19] is an agent-oriented software development
methodology which provides a visual modeling language that can be used to
define both an informal specification and a formal one. From a practical point
of view, the methodology guides the software engineer in building an informal,
conceptual model that is incrementally refined and extended from an early re-
quirements model, namely a representation of the organizational setting where
the system-to-be will be introduced, to system design artifacts, according to a
requirements-driven approach.

The Tropos language allows to model intentional and social concepts, such as
those of actor and goal, and set of relationships, such as actor dependency, goal
decomposition, means-end and contribution relationships. These elements sup-
port the modeling of basic goal analysis techniques. The language ontology has
been given in terms of common sense (informal) definitions. An actor models an
entity that has strategic goals and intentionality, such as a physical agent, a role
with respect to a given context, or a set of roles (i.e., a position). Goals represent
the strategic interests of actors. Two basic type of goals are considered, namely
hard and soft goals, the latter having no clear-cut definition and/or criteria as to
whether they are satisfied. Softgoals are useful for modeling goal/plan qualities
and non functional requirements. A dependency between two actors indicates
that an actor depends on another in order to achieve a goal, execute a plan, or
exploit a resource.

Basic modeling activities in Tropos include the identification of the actors
with their goals and of the actors mutual dependencies. Each goal can be ana-
lyzed from the point of view of the individual actor considering: possible sub-
goals (AND decomposition); means to satisfy these goals (means-end relation-
ship); alternative ways to achieve a specific goal (OR decomposition); goals or
plans or resources that can contribute positively or negatively to its achieve-
ment (contribution). All these models can be depicted using two basic types
of diagrams, namely, actor and goal diagrams. A detailed account of modeling
activities can be found in [3].

A Tropos specification provides a “static” view of the organizational setting
and of the dependencies among the different elements of the domain. A Formal
Tropos (FT hereafter on) specification [9,11] extends a Tropos specification with
annotations that characterize the valid behaviors of the model. In FT the em-
phasis goes in modeling the “strategic” aspects of the evolutions of the model.
Thus, an FT specification consists of a sequence of class declarations such as
entities, actors, goals, and dependencies. These are the formal counterparts of
the elements of the “informal” Tropos specification. Each declaration associates
a set of attributes to the class and characterizes its instances. Moreover, class
declarations contain temporal constraints expressed in a typed first-order linear

www.manaraa.com

Agent-Oriented Modeling by Interleaving Formal and Informal Specification 39

time temporal logic (LTL). These constraints describe the valid lifetime evolu-
tions of the model in terms of temporal evolutions of set of instances of the
classes in the specification. Two critical moments in the life-cycle of goals and
dependencies are the instants of their creation and fulfillment. The creation of
a goal is interpreted as the moment in which the owner or depender expects or
desires to achieve the goal, while its fulfillment is the moment in which the goal
condition is actually achieved. In FT , creation and fulfillment constraints can
be used to define conditions for these two moments in the life of intentional ele-
ments. Creation and fulfillment conditions are used, e.g., for defining constraints
on the lifetimes of sub-goals in a goal decomposition (sub-goals are created after
the parent goal and should be fulfilled before the parent goal can be fulfilled), or
for defining the responsiveness of an actor w.r.t. the dependencies (an actor can
take care immediately of some of them while delaying other dependencies). FT
also provides invariant constraints that define conditions that should be true
throughout the lifetime of class instances. Typically, invariants define relations
on the possible values of attributes, or cardinality constraints on the instances
of a given class.

Given an FT specification, one can ask questions such as: Can we construct
valid operational scenarios based on the model? Is it possible to fulfill the pri-
mary goals of actors in the current model? Do the decomposition links induce a
meaningful temporal order for goal fulfillment? Do the dependencies represent
a valid synergy or synchronization between actors? These questions can be for-
mulated as formal queries on a FT model and answered by the T-Tool [10],
an automatic verification tool based on the NuSMV [6] model checker (see [9,
10] for more details).

The effectiveness of the Tropos (and of the FT) methodology has been illus-
trated by several case studies [10,11,19,20]. In the following we will introduce a
simple example giving both the informal specification and the formal one. The
example is extracted from a real case-study developed in a technology trans-
fer project in the domain of decision-support systems in agriculture, described
in [20]. In particular, we will focus on goal modeling, represented by a simple
goal diagram, and we will describe basic questions that the analyst can issue
during informal modeling and that can be automatically answered when adding
formal annotations.

2.1 Informal Modeling

The example considered corresponds to a fragment of the early requirements
model for the agriculture domain. The early requirements model in Tropos de-
scribes the domain stakeholders (modeled as actors), their goals, and the mutual
dependencies. In our case, the actor Producer represents the apple grower who
pursues objectives such as applying Integrated Production (IP) 1 techniques with
1 Integrated Production (IP) aims at a sustainable approach to agriculture production.

In plant disease control, it promotes the use of low-impact techniques and chemicals,
and the exploitation of natural defense mechanisms.

www.manaraa.com

40 A. Perini et al.

Fig. 1. Goal diagram of the actor Advisor, showing an example of goal analysis.

the help of agronomists of the local advisory service, represented by the actor
Advisor. The example focuses on a particular technique for reducing the risk of
infection of an apple pest which requires to install in the orchard a pheromones
trapping system for preventing the pest population growth in the area. The de-
sign of the trapping system needs to take into account the geometry of the field
(e.g., perimeter), geographical feature of the area of the field and the possible
infections sources in the neighborhoods.

Figure 1, shows goal analysis of the Advisor, as resulting from a set of in-
terviews to agronomists, concerning approaches currently in use for applying
pheromones trapping techniques.

During goal analysis the analyst intends to extract all the possible steps that
the Advisor has to fullfil to achieve the higher level goal manage pheromone trap
plant. The analysis starts from the decomposition of this goal manage pheromone
trap plant in a set of goals that has to be all satisfied (AND decomposition). An
important step is the analysis of the agronomical history of the area of interest
(modeled with the goal hystorical data analysis), that can be done by finding the
data directly from the orchards descriptions (orchards hystorical data) maintained
by the producers, or by accessing the data from the research laboratory (lab data),
or by using data coming from the orchard monitoring systems, like meteorologi-
cal data, (see the goal monitoring devices data). In this case the OR decomposition
allows the analyst to model alternative ways to access data that can be available
from different information sources. Crucial for the advisor is the possibility to

www.manaraa.com

Agent-Oriented Modeling by Interleaving Formal and Informal Specification 41

Actor Advisor
Actor Producer
Goal ManagePheromoneTrapPlant

Actor Advisor
Mode achieve

Goal AreaCollection
Actor Advisor
Mode achieve
Attribute constant mptp : ManagePheromoneTrapPlant
Creation condition ¬ Fulfilled(mptp)
Invariant mptp.actor = actor
Fulfillment condition

∃ aavg : AreaAnalysisViaGIS ((aavg.actor = actor) ∧ Fulfilled(aavg)) ∧
∃ pp : PlantPlan ((pp.actor = actor) ∧ Fulfilled(pp)) ∧

∃ drao : DispenserReportAndOrder ((drao.actor = actor) ∧ Fulfilled(drao))
Goal OrchardAnalysis

Actor Advisor
Mode achieve
Attribute constant aavg : AreaAnalysisViaGIS
Creation condition ¬ Fulfilled(aavg)
Invariant aavg.actor = actor
Fulfillment condition

∃ od : OrchardsData ((od.depender = actor) ∧ Fulfilled(od))
Goal Dependency OrchardsData

Depender Advisor
Dependee Producer
Mode achieve
Creation condition

∃ ohd : OrchardHistoricalData ((ohd.actor = depender) ∧¬ Fulfilled(ohd)) ∨
∃ oa : OrchardAnalysis ((oa.actor = depender) ∧¬ Fulfilled(oa))

Invariant ∃ ohd : OrchardHistoricalData (ohd.actor = depender) ∨
∃ oa : OrchardAnalysis (oa.actor = depender)

Fig. 2. Excerpt of FT specification.

collect information about geographical and biological charcteristics for the ar-
eas that seems to be candidate for the application of the pheromone trapping
techniques (modeled with area collection). This goal can be accomplished by sat-
isfying three sub-goals, namely, the geographic analysis of the areas (area analysis
via GIS), the planning of the pheromone system (plant plan) and the distribution
of the pheromone dispensers (dispenser report and order). All these goals have to be
satisfied in order to obtain the set of needed information on the area. The dis-
penser distribution and the monitoring of the results obtained upon application
of the techniques complete the accomplishment of the higher level goal.

2.2 Formal Modeling

An excerpt of the FT specification for the agriculture example is depicted in
Figure 2. The FT specification can be obtained from the Tropos model by map-
ping actors and intentional elements into corresponding FT classes. The at-
tributes in FT are references to other classes. For example, goal OrchardAnalysis
refers to the AreaAnalysisviaGIS goal that motivates the advisor to get the orchard
data (attribute aavg). Similarly, dependency OrchardsData refers to OrchardHys-
toricalData and to OrchardAnalysis goals of the advisor. Since actor Advisor is the

www.manaraa.com

42 A. Perini et al.

owner of goals ManagePheromoneTrapPlant, AreaCollection and OrchardAnalysis, the
FT specification has Advisor as the Actor attribute of the three goals. Similarly,
Depender and Dependee attributes of dependencies represent the two parties
involved in a delegation relationship. Goals and dependencies in Figure 2 are
also equipped with a mode attribute, which defines the modality of fulfillment.
The mode of goal ManagePheromoneTrapPlant, for instance, is achieve, which
means that the advisor wants to reach a state where he was able to manage
the pheromone trap plant, and therefore the goal is fulfilled. Another modality
in maintain, where the fulfillment condition is to be continuously maintained.
Figure 2 contains also some examples of constraints on the lifetime of class in-
stances. For instance, the first invariant of Figure 2 binds a AreaCollection object
with its father ManagePheromoneTrapPlant object. Typically, primary intentional
elements, (e.g., ManagePheromoneTrapPlant) have fulfillment constraints, but no
creation constraints: we are not interested in modeling the reasons why an advi-
sor wants to manage a pheromone trap plant. Subordinate intentional elements
(e.g., AreaCollection, OrchardAnalysis) typically have constraints that relate their
creation with the state of their parent intentional elements. For instance, Fig-
ure 2 shows that a creation condition for an instance of goal AreaCollection is
that the parent goal ManagePheromoneTrapPlant is not yet fulfilled: if the advisor
has already managed the pheromone trap plant there is no need to manage it
again (unless a new management activity is started). The creation condition of
dependency OrchardsData together with the fulfillment condition of goals Orchard-
HystoricalData and OrchardAnalysis elaborate the delegation relationship between
Advisor and Producer in the corresponding Tropos diagram.

In an FT specification we can also specify properties desired to hold in the
domain, so they can be verified against the model we built. In FT we distinguish
between assertion properties that should hold for all valid evolutions of the
FT specification, and possibility properties that should hold for at least one.
Given the FT specification and a set of properties, we can verify whether the
FT specification satisfies the properties by means of the T-Tool.

3 The Framework

The proposed framework is based on the idea of exploiting formal techniques to
guide and support the analyst while building and refining a conceptual model.
We describe it focusing on a set of requirements engineering activities, such as
requirements elicitation and refinement, or user validation of requirements spec-
ification. These activities involve domain stakeholders and an informal analyst
(called from now on iAnalyst), which can pose specific questions to a formal
analyst (fAnalyst)2. After a preliminary acquisition of information on domain
stakeholders, on their goals and on their reciprocal dependencies, the iAnalyst

2 Our long term goal is that of deriving the requirements of a CASE tool that could
play the role of the fAnalyst, as emerging from the following discussion. For the
moment, the role of the fAnalyst has to be played by a human actor.

www.manaraa.com

Agent-Oriented Modeling by Interleaving Formal and Informal Specification 43

starts building an early requirements model, such as that described by the dia-
gram depicted in Figure 1.

Once the preliminary early requirements model has been devised, the iAn-
alyst proceeds with the analysis of this model. Covered activities are: the as-
sessment of the model against possible inadequacies, incompleteness or incon-
sistencies; the validation of the resulting specification with the stakeholders in
order to end up with an agreed set of requirements; and, when inconsistencies
are discovered the needs of model revision, the management of model refinement
and evolution, in order to maintain its consistency, propagate changes, merge
redundant information.

In these activities, the iAnalyst has the possibility to make queries on specific
aspects of the model that the fAnalyst translates into FT properties and checks
on the FT model. The queries of the iAnalyst may concern different aspects of
the model. In particular, the iAnalyst can check:

– the capability of an actor to fulfill a given goal, possibly assuming that some
sub-goals or some dependencies cannot be achieved;

– the presence of constraints on the temporal order in which activities/goals
can be started and/or achieved;

– the presence of implicit cardinality constraints on the relationships among
goals in a goal diagram;

– the fact that a given property is respected by all the valid behaviors of the
model;

– the fact that a given property is exhibited by some of the valid behaviors of
the model.

In most of the cases, the formalization effort required to the fAnalyst for answer-
ing to these queries is small. The FT model can be obtained by an automatic
translation of the informal model [10], and the FT property is obtained directly
by the informal query of the iAnalyst.

In the following, we discuss three examples that illustrate the framework with
respect to the different requirements engineering activities. In each example we
identify a set of specific questions the iAnalyst can be interested in; we formalize
these questions using a high level query language; we show how to map these
queries into low-level FT properties that are checked by the T-Tool; and we
discuss the answers obtained for the queries and possible ways for visualizing
them. We also comment on the benefits and costs of the proposed approach.
For explanatory purposes, we use the simple goal diagram depicted in Figure 1.
We remark that on this small model it is easy to answer to the questions of
the iAnalyst with a direct inspection of the model. On larger models, the added
value of using the fAnalyst services becomes more and more relevant.

3.1 Example 1. Assessing and Refining the Informal Model

The iAnalyst assesses the model against possible inconsistencies or redundancies
or critical elements, and eventually refines the informal model on the basis of
the answer of the fAnalyst to his/her questions.

www.manaraa.com

44 A. Perini et al.

Fig. 3. A scenario where the historical data analysis goal is fulfilled.

Given the goal diagram depicted in Figure 1 a possible question of the iAn-
alyst can be:

Is it possible for the advisor to perform historical data analysis?

We can formulate this question as the following query:

FULFILLABLE HistoricalDataAnalysis

This query corresponds to the the low level FT property:
Global Possibility

F (∃ a : Advisor (∃ hda : HistoricalDataAnalysis (hda.actor = a ∧ Fulfilled(hda))))

The FT specification admits a scenario that conforms with the above formula,
and this scenario can be depicted in terms of a frame sequence, as in Figure 3.

In the scenario, historical data analysis is fulfilled using orchard hystorical data
received from the Producer. Each frame corresponds to a step of the scenario
instantiation process: the first frame shows the creation of the goal the query
refers to, the subsequent frames complete the creation of sub-goals till a goal
delegation is reached (frame 2); in the following frames, the effects of the satis-
faction of the delegated goal, shown by the dashed texture, is propagated back,
along the goal decomposition till the goal under inspection. The above question
can be cosidered a specific instance of the general question:

Focusing on a specific actor goal, does the current model allow to achieve
it in some valid scenario?

If the answer to such questions is positive, the result can be effectively shown
by a diagram analogous to the one depicted in Figure 3. If a scenario does not
exist, a warning message is emitted.

www.manaraa.com

Agent-Oriented Modeling by Interleaving Formal and Informal Specification 45

Another type of question the iAnalyst can pose when analyzing the advisor
goal diagram is:

How critical is the dependency on the actor Producer in order to satisfy
the main advisor’s goal manage pheromone trap plant?

This question can be reformulated as “Is it possible to fulfill manage pheromone
trap plant without fulfilling all the dependencies with the Producer actor?” This
question can be mapped to the following query expressed in the high level query
language:

NONCRITICAL Producer FOR ManagePheromoneTrapPlant

which corresponds to the the low level query:
Global Possibility

F (∃ a : Advisor (
∃ mftp : ManagePheromoneTrapPlant (mftp.actor = a ∧ Fulfilled(mftp) ∧

∀ p : Producer (∀ od : OrchardData (od.depender = a ∧ od.dependee = p →
¬Fulfilled(od))))))

When this query is submitted to the T-Tool, a witness scenario is generated
that conforms to the specification (see Figure 4).

The above question can generalized by the following:

Focusing on a specific actor, what are the critical dependencies on exter-
nal actors? That is, what actors can prevent the achievement of a main
goal if they do not achieve delegated goals?

This kind of questions can be seen as queries on the graph corresponding to a
goal diagram. They are particularly useful when dealing with a complex model
for which a direct inspection of the diagram is impractical. For these questions,
the informal queries can be automatically translated into the relative FT speci-
fication, so no additional effort to the iAnalyst is required.

3.2 Example 2. Validating the Informal Model with the
Stakeholders

The iAnalyst looks for relevant validation cases to be proposed to the stakehold-
ers in order to drive the validation process and to end up with an agreed model.
Validation cases can be suggested by the fAnalyst on the basis of the model
structure.

Given the actor diagram depicted in Figure 1 a possible question of the
iAnalyst in this case is:

How does the advisor usually operate? Is that he/she always satisfies
the goal area collection after satisfying all its sub-goals, according to the
following sequence: area analysis via GIS, plant plan and finally dispenser
report and order?

www.manaraa.com

46 A. Perini et al.

Fig. 4. A scenario where the manage pheromone trap plant goal is fulfilled without any
dependency from a Producer.

We can formulate this query as follows:

FULFILL AreaAnalysisViaGIS THEN PlantPlan THEN DispenserReportAndOrder
THEN AreaCollection

This corresponds to the the low level query:

Global Assertion F (
∀ a : Advisor (∀ ac : AreaCollection (ac.actor = a →

∀ aavg : AreaAnalysisViaGIS (aavg.ac = ac →
∀ pp : PlantPlan (pp.ac = ac →

∀ drao : DispenserReportAndOrder (drao.ac = ac →
(Fulfilled(ac) ∧ Fulfilled(aavg) ∧ Fulfilled(pp) ∧Fulfilled(drao)) →

P (JustFulfilled(aavg) ∧ X F (JustFulfilled(pp) ∧
X F (JustFulfilled(drao) ∧ X F JustFulfilled(ac))))))))))

When this question is submitted to the T-Tool, a scenario that violates the
assertion is found.

www.manaraa.com

Agent-Oriented Modeling by Interleaving Formal and Informal Specification 47

orchard analysis

orchard data

plant plan

ppdraoaavg ac

area collection

area analysis

dispenser report
and order

via GIS

Fig. 5. A validating scenario where the goal area collection is fulfilled.

Figure 5 illustrates this scenario with a bar-charts diagram that shows the
ordering in which the goals involved in the specification are created (beginning of
the light bar) and fulfilled (beginning of the dark bar). The scenario shows a case
where goal dispenser report and order is achieved before plant plan. This scenario
can be discussed with the stakeholder, in order to understand whether this order
of achievement is possible in the application domain. If it is possible, then the
query can be refined in order to take into account that dispenser report and order
and plant plan can be achieved in an arbitrary order. If it is not possible, then a
temporal constraint between these two goals has to be added in the FT model,
so that the invalid behavior is discarded. The above question can be cosidered a
specific instance of the general question:

Focusing on a specific actor, is there an implicit temporal ordering in a
goal decomposition, that should be explicited?

This service requires to store all possible ordering of the goals under consider-
ation (a set of bar-chart diagrams like the one of Figure 5 can be used to this
purpose) and to annotate those orders that the stakeholder has considered valid.

Another specific question that can be asked for when performing the analysis
considered in this second example, is:

In the case more than one plant plan activities can be performed before a
dispenser report and order, is it always the case that all instances of plant
plan relative to the same orchard have to be fulfilled before fulfilling the
dispenser report and order for the orchard?

We can formulate this query as follows:

FULFILL ALL PlantPlan BEFORE DispenserReportAndOrder

which maps to the FT assertion:

Global Assertion F (
∀ a : Advisor (∀ ac : AreaCollection (ac.actor = a →

∀ drao : DispenserReportAndOrder (drao.ac = ac →
Justfulfilled(ac) → ∀ pp : PlantPlan (pp.ac = ac → Fulfilled(pp))))))

www.manaraa.com

48 A. Perini et al.

dispenser report
and order

area analysis
via GIS [A]

infection source
analysis [A]

area analysis
via GIS [B]

plant plan [A]

orchard analysis [B]

plant plan [B]

orchard data [B]

pp[B]pp[A] drao

area collection

Fig. 6. Another validation scenario for the goal area collection with two instances.

Also in this case, the T-Tool generates a counter-example scenario, illustrated
by the bar-charts diagrams depicted in Figure 6. The scenario shows that it is
possible to fulfill the second instance of plant plan after the dispenser report and
order has already been fulfilled. The question can be considered a particular case
of the more general one:

Focusing on a specific actor, is there an implicit cardinality on the re-
lationships which models a given goal decomposition that should be ex-
plicited? How do these relationships impact in the temporal ordering of
the goal decomposition?

The formalization effort for the queries on implicit temporal orderings and on
implicit cardinalities is higher than that of the basic queries seen for Example 1.
Indeed, annotations have to be added to the FT model in order to implement
the constraints on the temporal orders that are agreed with the stakeholder. On
the other hand, the understanding of these constraints is very important for a
deep understanding of the whole application domain, and their elicitation is very
difficult in a purely informal framework.

3.3 Example 3. Managing the Model Evolution

The iAnalyst can exploit the fAnalyst services also to manage the model evolu-
tion, catching the creation of inconsistency due to a modification of a (previously
consistent) model. In particular, question of the following type could be posed
by the iAnalyst:

We remove infection sources analysis. Does this lead to critical dependencies
from other actors?

This corresponds to general questions on whether a change in the model makes
it impossible to achieve a goal that was previously possible to achieve, or if it
introduces new critical goals or dependencies. This question can be solved by

www.manaraa.com

Agent-Oriented Modeling by Interleaving Formal and Informal Specification 49

Fig. 7. The modified goal diagram if temporal ordering constraints are taken into
account.

re-executing the queries performed in previous steps. If some of the queries fail,
than the result produced can be used to correct the specification. If they all
succeed, than we can formulate additional queries to validate the specification
as described previously.

Assume that in area collection we mark that plant plan has to be satisfied prior
to dispenser report and order (as it is the case after a previous query). We now
restructure the model, moving goal dispenser report and order one level up (see
Figure 7). A second question could be:

Is the temporal order previously described for the goals plant plan and
dispenser report and order still respected in the new model?

The question can be seen as a request of advise on possible violation of previuosly
validated temporal constraints, when some change in the AND/OR structure of
goals has been introduced. In the specific example, the reconfiguration of the
model has invalidated the constraint on the temporal order of the two goals, and a
counter-example scenario is returned by the T-Tool. In order to guarantee that
plant plan is satisfied prior to dispenser report and order, a new temporal constraint
has to be added to the model, for instance between goals area collection and
dispenser report and order.

We remark that the possibility of re-running the queries when the model
changes is one of the most important benefits of the approach that we are propos-
ing in the paper. Indeed, it allows to identify the effects of the changes to the
properties that the model is supposed to satisfy as soon as the changes are
performed on the model.

4 Related Work

The potential advantages of adopting agent-oriented approaches for building
complex distributed software systems have been discussed in [13,19]. Current

www.manaraa.com

50 A. Perini et al.

Agent-Oriented Software Engineering (AOSE) methodologies, such as Gaia [22],
MaSE [7], Prometheus [18] and AUML [2] propose to use informal modeling
for requirements analysis and system design, even if the importance of Formal
Methods is widely recognized in the AOSE community. See [4] for a presentation
of some of these techniques and of their application to the specification, to the
verification, as well as to the automated generation of an implementation of
agent systems. Most of these approaches, however, require a heavy formalization
effort and strong skills in order to be used effectively.

Our aim is to allow for a lightweight usage of formal verification techniques,
that are used as services in an “informal” development methodology. A recent
methodology, called ATOS [14], adopts a similar approach with regard to the
detailed design of interaction protocols in Multi-Agent System design. ATOS
introduces a textual notation of AUML that can be translated to an extended
finite state machine which can be processed by a model checker. ATOS has been
exploited to perform formal verification of AUML sequence diagram specification
of interaction protocols of Multi-Agent System.

More specifically, in this paper we focus on requirements engineering activi-
ties that have been deeply analyzed in [21] which points out also the potential
benefits that can be achieved adopting a formal specification approach (even if
costs in development and assessment are still considered high). We agree with
the following general consideration borrowed from this work, which states that:
“the by-products of a formal specification process are often more important than
the formal specification itself, including a better informal specification, obtained
by feedback from formal expression, structuring and analysis”.

There are several works that propose the application of formal analysis tech-
niques to requirements specifications, but that are outside the frame of AOSE. A
discussion of these works is out of the scope of this paper. The interested reader
can find this discussion in [10], where FT is compared to KAOS [16], a frame-
work that supports requirements analysis adopting a goal-oriented approach,
and to the Topoi diagrams [17].

Some comments are in order on the verification engine used in our frame-
work, namely the NuSMV model checker. The advantage of model checking
w.r.t. other verification techniques, (e.g., theorem proving — see [4] for a deeper
comparison) is that it allows for an automated verification. This is a fundamental
requirements in order to use the formal techniques as “services” of an informal
methodology. NuSMV [6] is a flexible model checker that implements several
state-of-the-art verification techniques and that provides an open architecture
for an easy integration of new algorithms. In the paper we exploited only the
NuSMV algorithms for checking linear-time logic (LTL) properties. However,
we foresee the possible applications of other NuSMV functionalities (most no-
tably model simulation and the verification of branching time logics like CTL)
to answer to new kinds of queries that the iAnalyst may want to formulate.

www.manaraa.com

Agent-Oriented Modeling by Interleaving Formal and Informal Specification 51

5 Conclusion and Future Work

This paper described a lightweight usage of formal verification techniques when
performing conceptual modeling within an agent-oriented methodology which
provides a modeling language that can be used both to build an informal speci-
fication or a formal one [3,10].

A preliminary analysis of the proposed framework has been discussed with
reference to a set of activities, relevant for requirements engineering, such as
requirements elicitation and refinement, user validation of requirements speci-
fication, or management of requirements evolution. We considered the decision
making process of the analyst when performing those activities and we discussed
how it can be supported by formal verification services. Along this line we are
defining additional verification services. Moreover, this approach will be extended
to other activities in the software development process, such as architectural and
detailed design. The proposed framework need to be validated in a systematic
way in order to demonstrate its benefits, for instance with respect to the ap-
proach that rests on informal modeling only. An ultimate objective, beside that
of providing the automatic translation of an informal model to a formal one, is
that of developing a tool that supports the analyst and the designer which use
informal modeling, for performing the deductive reasoning on a formal specifi-
cation, by formulating queries analogous to those discussed in the examples of
this paper.

References

1. S. W. Ambler. Agile modeling essays, 2003.
http://www.agilemodeling.com/essays.htm.

2. B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formalism for specifying
multiagent software systems. Int. Journal of Software Engineering and Knowledge
Engineering, 11(3):207–230, 2001.

3. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos:
An Agent-Oriented Software Development Methodology. Journal of Autonomous
Agent and Multi-Agent Systems, 2003. To appear.

4. P. Ciancarini and M. Wooldridge. Agent-oriented software engineering: the State
of the Art. In Agent-Oriented Software Engineering, First International Workshop,
AOSE 2000, number 1957 in LNCS, pages 1–28, Limerick, Ireland, June 2000.

5. P. Ciancarini and M. Wooldridge, editors. Agent-Oriented Software Engineering,
volume 1957 of Lecture Notes in AI. Springer-Verlag, March 2001.

6. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic model
checking. In Computer Aided Verification, number 2404 in LNCS, Copenhagen
(DK), July 2002. Springer.

7. S. A. Deloach. Analysis and Design using MaSE and agentTool. In 12th Midwest
Artificial Intelligence and Cognitive Science Conference (MAICS 2001), Miami
University, Oxford, Ohio, March 31 - April 1 2001.

8. R. Fuentes, J. J. Gómez-Sanz, and J. Pavón. Activity Theory for the Analysis and
Design of Multi-Agent Systems. In Agent-Oriented Software Engineering, Fourth
International Workshop, AOSE 2003, LNCS, Melbourne, Australia, July 2003.

www.manaraa.com

52 A. Perini et al.

9. A. Fuxman. Formal analysis of early requirements specifications. Master’s thesis,
University of Toronto, 2001.

10. A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopoulos. Specifying and
analyzing early requirements: Some experimental results. In IEEE Int. Symposium
on Requirements Engineering, Monterey (USA), September 2003. IEEE Computer
Society.

11. A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking early
requirements specifications in Tropos. In IEEE Int. Symposium on Requirements
Engineering, pages 174–181, Toronto (CA), August 2001. IEEE Computer Society.

12. F. Giunchiglia, J. Odell, and G. Weiß, editors. Agent-Oriented Software Engineer-
ing III. LNCS. Springer-Verlag, Bologna, Italy, Third International Workshop,
AOSE2002 edition, July 2002.

13. N. R. Jennings. An Agent-Based approach for building complex software systems.
Communication of the ACM, April 2001.

14. J. L. Koning and I. Romero-Hernandez. Generating machine processable represen-
tations of textual representations of auml. In Agent-Oriented Software Engineering
III, Third International Workshop, AOSE 2002, number 2585 in LNCS, pages 126–
137. Springer, july 2002.

15. P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley, 2nd
edition, 2000.

16. E. Leiter. Reasoning about Agents in Goal-oriented Requirements Engineering.
PhD thesis, Universite Catholique de Louvain, 2001.

17. T. Menzies, J. Powell, and M. E. Houle. Fast formal analysis of requirements via
”topoi diagrams”. In the 23rd Int. Conference on Software Engineering, pages
391–400, Toronto, CA, May 2001. ACM Press.

18. L. Padgham and M. Winikoff. Prometheus: A Methodology for Developing Intel-
ligent Agents. In Giunchiglia et al. [12].

19. A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos. A Knowl-
edge Level Software Engineering Methodology for Agent Oriented Programming.
In Proceedings of Agents 2001, Montreal, CA, may 2001. ACM.

20. A. Perini and A. Susi. Designing a Decision Support System for Integrated Pro-
duction in Agriculture. An Agent-Oriented approach. Environmental Modelling
and Software Journal, 2003. to appear.

21. A. van Lamsweerde. Formal specification: a roadmap. In ICSE 2000, 22nd Inter-
national Conference on on Software Engineering, Future of Software Engineering
Track, pages 147–159, Limerick Ireland, June 2000. ACM.

22. M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3), 2000.

23. M. Wooldridge, G. Weiß, and P. Ciancarini, editors. Agent-Oriented Software En-
gineering II. LNCS 2222. Springer-Verlag, Montreal, Canada, Second International
Workshop, AOSE2001 edition, May 2001.

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 53–67, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The ROADMAP Meta-model for Intelligent Adaptive
Multi-agent Systems in Open Environments

Thomas Juan and Leon Sterling

Intelligent Agent Lab, Department of Computer Science and Software Engineering,
University of Melbourne, Victoria 3010, Australia

{tlj,leon}@cs.mu.oz.au
http://www.cs.mu.oz.au/agentlab

Abstract. In this paper, we introduce the ROADMAP meta-model, designed to
describe intelligent adaptive systems in open environments, using agent con-
cepts such as roles. Developing intelligent adaptive systems creates new chal-
lenges in engineering software quality attributes such as correctness and
reliability. The ROADMAP meta-model captures our understanding of proper-
ties of intelligent adaptive systems and our perspective on organizational con-
cepts such as roles. The meta-model does not solve specific engineering
problems, but provides a clean high-level structure where engineering issues
can be grouped and classified. Infrastructure to support these issues can then be
put in place progressively with consistency. An informal evaluation of the
meta-model and comparison to related work is also presented. We expect de-
velopers of AOSE methodologies, tools, programming languages and frame-
works to benefit from understanding the design and structure of the
ROADMAP meta-model. By adopting the meta-model, the resulting method-
ologies, tools and languages may inherit its desirable characteristics and better
support the development of intelligent adaptive systems in open environments.

1 Introduction

In the last decade, the focus of agent research has shifted from single agent systems to
multi-agent systems, with emphasis on creating and using artificial organizations of
agents [3, 4, 5, 6, 10, 11, 13, 16]. A significant part of the research effort is on ex-
ploring different meanings for organizational concepts such as roles. Few attempts
have been made to formalize the theory of agent organization as meta-models [4, 13].
However, these attempts did not discuss nor address issues arising from intelligent
adaptive systems embedded in open environments.

Intelligent adaptive systems capable of handling open environments have signifi-
cant commercial value for industry, and have been the focus of extensive research in
academia. Such systems present new challenges for engineering traditional quality
attributes such as reliability, and inspire new quality attributes such as privacy. As a
result, they are difficult to develop using conventional methods.

www.manaraa.com

54 T. Juan and L. Sterling

As intelligent adaptive systems are potentially the most important application do-
mains for agent technologies; we believe the properties and characteristics of such
systems must be taken into consideration during the development of AOSE method-
ologies, tools, programming languages and frameworks. A cost-effective way to sim-
plify the development of intelligent adaptive systems is to build supporting
mechanisms directly into the fundamental constructs of AOSE. The ROADMAP
meta-model was designed to describe such systems. It defines key constructs for
multi-agent systems, such as agents and roles, and their inter-relationships, such as
aggregation, in a way that facilitates the development of intelligent adaptive systems.
The meta-model formalizes and summarizes our understanding of properties of intel-
ligent adaptive systems in open environments and our perspective on concepts such as
roles.

We expect developers of AOSE methodologies, tools, programming languages and
frameworks to benefit from understanding the design of the meta-model. By adopt-
ing the meta-model, the resulting methodologies, tools and languages may inherit its
desirable characteristics and better support the development for intelligent adaptive
multi-agent systems. Section 2 presents our analysis of intelligent adaptive systems in
open environments from the perspective of engineering software quality attributes
[14]. Section 3 introduces the ROADMAP meta-model. Section 4 describes two ex-
ample applications of the ROADMAP meta-model, namely the ROADMAP method-
ology [6], and an approach to create custom project-specific methodologies by
reusing AOSE features [8, 9]. Section 5 evaluates the ROADMAP meta-model and
related work with a set of criteria. Section 6 concludes.

2 Future Agent Systems and the Challenges on Software Quality

In this section, we present our analysis of intelligent adaptive systems in open envi-
ronments, influenced by our software engineering training, including the need to
engineer software quality attributes [14]. We examine how properties of such systems
give new meanings to traditional software quality attributes such as correctness and
performance. We suggest a class of new and imprecise quality attributes, such as
privacy and politeness, based on existing work on engineering non-functional re-
quirements and “soft-goals” in software systems [22,23,24], and explore issues in
engineering these new quality attributes.

2.1 Intelligent Adaptive Systems in Open Environments

An intelligent system acts rationally in situations and takes the optimal action to pur-
sue its goals [21]. Performing rational action may require large amount of knowledge
and reasoning. For example, for an intelligent search engine to return the most rele-
vant webpages, it must reason about the nature of the user and the context of the
search. It must also reason about the content of the webpages it indexed to determine
what makes a page relevant.

www.manaraa.com

The ROADMAP Meta-model for Intelligent Adaptive Multi-agent Systems 55

An adaptive system senses changes in its usage and its environment, and alters its
behavior at runtime for better results [25]. For example, a business system may
change its structure (architecture) to mirror changes in the human organization. Ma-
chine learning could be used by the system for self-optimization.

In an open environment, potentially malicious agents may enter the system at run-
time. Therefore we cannot trust all agents to act according to the system-wide goals.
Instead, we must create mechanisms to ensure correct system-wide behaviour even
when individual agents are malicious and misbehave.

Future multi-agent systems may be expected to have many of these properties. In-
deed, IBM's new research initiative codenamed "Autonomic Computing" [17] makes
an early attempt to address most of the issues described above.

2.2 Impact on Software Quality

Intelligent adaptive systems in open environments create new challenges in software
development. For such systems, current development techniques cannot guarantee
quality attributes such as correctness to hold after deployment. For example, correct-
ness is traditionally assured by testing the system before release, against documented
requirements. The assurance provided by this approach is lost if the system behaviour
changes due to continuous adaptation or environment change, or if new agents in the
open environment misbehave. Following the same logic, system performance, reli-
ability, security, usability and maintainability can be compromised due to adaptation
or environmental changes. Without explicit representation of system requirements
and constant validation at runtime, there is no guarantee that the system functions
correctly. This view is shared by earlier work in [12].

To solve the problem, it seems necessary to include constructs to explicitly repre-
sent the correct system behaviour and the required level of quality attributes to allow
runtime validation of the system. The construct should also allow the desired direc-
tion of adaptations to be specified, ensuring that adaptation produces positive and
desirable outcomes.

Furthermore, as we rely more on intelligent systems for decision support, new and
imprecise quality attributes such as privacy, politeness and benevolence begin to
emerge. The exact meanings of these quality attributes, such as good taste and pri-
vacy, depend closely on the actual user of the system and the context of each use.
Whether the system fulfils the quality attributes is very open to user interpretation and
perception. For example, if I rely on assistant agents to suggest gifts to buy for vari-
ous social occasions, I may expect the choices of the gifts to be legal, appropriate, and
show good taste. Yet no general and precise definitions exist for these quality attrib-
utes. In another example, we may expect our personal assistant agents to have close
knowledge of our daily routines, habits and preferences. Yet we also expect user
privacy and do not wish such knowledge to become public. The meaning of privacy
and the level of privacy needed by each user are subjective and usually different.

For many intelligent systems, the sheer complexity of their tasks renders it difficult
to fully define and test for correctness. To address this issue, we suggest that the

www.manaraa.com

56 T. Juan and L. Sterling

AOSE paradigm must make available constructs to define such quality attributes, in a
flexible manner so the definitions can be easily customized for each user at runtime.

The separation of knowledge from hard-coded functionalities allows better re-use
and maintenance. It also allows the possibility of engineering quality attributes at the
knowledge level. For example, a self-optimizing system can learn the usage patterns
and change its internal logic for better performance. By improving the agent’s knowl-
edge on analyzing usage patterns and the knowledge on optimizing its own internal
logic, we can indirectly improve the system performance significantly.

From the example, we see the potential to improve quality attributes at the knowl-
edge level, in addition to traditional quality engineering at the functionality level.
This approach is particularly significant to agent systems as agent oriented program-
ming is at a higher level of abstraction, and in many cases can be viewed as at the
knowledge level. It is most natural to perform knowledge level quality engineering in
agent systems.

Currently we are not aware of any development methodologies that formally ad-
dress and systematically support the engineering of quality attributes at the knowl-
edge level. We wish to promote this perspective as essential to developing intelligent
adaptive systems and invite new research into this area.

2.3 Summary

Quality requirements of intelligent adaptive systems are dynamic, complex and fuzzy.
To facilitate development of these systems, we see the need to provide support for
engineering quality attributes, for the entire software development lifecycle in meth-
odologies, CASE tools, programming languages and into the actual applications. As a
first step, we support the abstract representation of system functionalities and quality
attributes in the constructs of a meta-model for AOSE. We extend existing work
[22,23,24] in the context of agent systems, at the level of fundamental constructs for
AOSE, and enable runtime reasoning of functionalities and quality attributes.

The meta-model does not aim to provide solutions to every application specific
engineering problems such as performance enhancement. Rather, it provides a clear
high-level structure under which engineering issues can be grouped, classified and
accommodated. At this stage, we take a less formal approach to the meta-model and
are not very concerned with the formal semantics of the constructs. We aim to pro-
gressively introduce infrastructure for addressing the engineering issues into the
meta-model. By adopting the meta-model, methodologies, tools, programming lan-
guages and frameworks should consequently provide support for engineering quality
attributes consistently.

3 The ROADMAP Meta-model

The ROADMAP meta-model is a generic meta-model for describing multi-agent
systems. The ROADMAP meta-model has been derived from the ROADMAP meth-

www.manaraa.com

The ROADMAP Meta-model for Intelligent Adaptive Multi-agent Systems 57

odology [6] and our earlier work [7]. The meta-model is special in the sense that it
describes runtime systems and all constructs shown in the meta-model have concrete
physical runtime manifestations. Each concrete runtime construct is instantiated from
its respective development-time class. However, we omit the development-time
classes from the meta-model for simplicity.

3.1 The Meta-model

Following the analogy that putting people together does not form efficient organiza-
tions unless sufficient processes, regulations, infrastructure and organization goals are
also in place, we propose to model multi-agent systems by two hierarchies at runtime
(see Figure 1).

Agent1

Agent2

Agent3

Agent4

Fig. 1. A multi-agent system viewed as independent hierarchies of agents and roles

The role hierarchy represents a high-level abstract specification of requirements,
capturing organizational structures, regulations, processes, goals, responsibilities and
various permissions for the agents to function in the system. The agent hierarchy
provides concrete implementation of system functionalities.

The ROADMAP meta-model is shown in Figure 2. All the entities in the meta-
model are realized at runtime. A role can aggregate other roles, interact with other
roles and modify other roles given the proper authorization. A role in the ROADMAP
meta-model is defined as in the ROADMAP methodology [6], with two improve-
ments. Figure 3 shows the partial definition of a role.

First, the lifecycle of a role can be roughly divided into states in its liveness re-
sponsibility, such as Work in the example below, and further into protocols. We now
allow other role attributes to be specified temporally with the states and protocols, by
introducing keywords before, during and after. For example, we can restrict the per-
mission to access socket only to the Work state (see Figure 3). Similarly, the Connect
protocol can be invoked only if the safety condition “ActiveConnection () < Connec-
tionPool” holds before the call, as a pre-condition to the protocol (see Figure 3). The
use of these keywords gives us new and fine-grained control over the execution of
implementing agents.

www.manaraa.com

58 T. Juan and L. Sterling

Role

Agent

Protocol

ServiceKnowledge
Component

Environment
Zone

Constrains

Implements

Constrains

Implements

Interact
Modify

Interact
Modify

Interact
Modify

Interact
Modify

Fig. 2. The ROADMAP meta-model

The second improvement is the use of evaluation functions in roles and the intro-
duction of the Goal attribute. Instead of safety conditions that must hold true in the
ROADMAP methodology, functions like Reliability () can now return any value and
can be used as evaluation functions for agent performance. These evaluation func-
tions serve as the official measure of quality attributes in the organization. For exam-
ple, reliability can be defined in many ways. However, for agents taking this
particular role, reliability is defined and measured by the Reliability function. There-
fore the agent can simply adapt to maximize or minimize the result of this function,
according to its Goal attribute. Similarly, a goal of a role may be maximizing privacy,
according to an attached evaluation function, say Privacy (), that exactly defines the
meaning of privacy for the implementing agents. The keyword “according to” is used
to nominate a prioritizing function. The function should return relative importance of
active goals given a state or a protocol. The result of this function allows agents to
understand the official priority of goals. Agents can decide how to handle conflicting
goals and how to spend their resources to achieve the goals accordingly. Some quality
goals will have no precise evaluation function. In that case, the best alternative avail-
able can be used and the system will probably not perform optimally. Official com-
munications and messages in the organization should go through roles. This ensures
agent behaviours can be validated at runtime for correctness and other quality attrib-
utes, by invoking the evaluation functions. The functions in role definitions are sim-
ply references to implementations that may be in the same role, other roles, an agent
or an object in the environment. For example, the function Socket.ResponseTime ()
in Figure 3 is implemented in an external object named Socket.

www.manaraa.com

The ROADMAP Meta-model for Intelligent Adaptive Multi-agent Systems 59

Role name: NetworkTransport
Liveness Responsibility: NetworkTransport = (Work | Wait) w

Work = Connect . Transmitw . Disconnect
Safety Responsibility: Reliability () > 8 during Work

Throughput () > 3 during Transmit
ActiveConnection () < ConnectionPool before Connect
Socket.ResponseTime () < 4 during Connect

Goals: Max. Reliability () during Work
Max. Throughput () during Transmit
Min. ActiveConnection () during Work
According to Prioritize ()

Permissions: Access Sockets during Work
Protocols: Connect, Transmit and Disconnect and Wait

Fig. 3. Example (partial) definition of a role

An agent is defined as a runtime entity that has a unique identity, communicates
using asynchronous and synchronous messages, maintains a list of roles it takes, and
maintains a list of currently active roles. The use of messages to model all agent in-
teraction reduces the coupling between agents, as messages can be rejected, for-
warded to other agents, logged or played back. An agent can aggregate other agents,
and interact with other agents. When agents interact directly without going through
roles, the interaction is considered private and does not have the same official status
within the organization. For certain organizations private interaction can be undesir-
able and prohibited.

Figure 4 shows an example of official interaction in an organization between
Agent A and Agent B. The message from Agent A is first sent to and validated by its
role. If all constraints are satisfied, the message propagates to Agent B’s role. After
the message is validated, Agent B receives the message and can now respond to it. As
part of the organizational arrangement, the message is also forwarded to Agent C’s
role, and to Agent C after validation for monitoring purpose.

Role BRole A

Role C

Agent A Agent B

Agent C

Message A Message A Message A

Message A

Message A

Fig. 4. Successful message passing and forwarding between agents and roles

www.manaraa.com

60 T. Juan and L. Sterling

If the message fails to satisfy constraints from any roles concerned, the message
will be rejected and actions will be taken to handle the error. This mechanism ensures
that the interaction respects the perspectives of all roles involved. In addition, quanti-
tative results may be produced by evaluation functions within the roles. Such results
provide indications to agents on how well their interaction satisfies system require-
ments on functionalities and quality attributes. This mechanism is somewhat similar
to the fitness function in a genetic algorithm [1]. However, it is structured in a modu-
lar fashion while allowing different agent implementation architecture. In another
word, the roles form an architecture-independent common platform for expressing
quality attributes, such as privacy. In theory, it is possible to define the organization,
and populate it with learning agents with random initial behaviour. With sufficient
training the agents should learn from their roles in the organization to perform correct
system functionalities without human intervention. Developers may now design and
implement the system quickly without committing to many design decisions, and
allow the design decisions to be made by agents at runtime according to the actual
usage. Related work on roles can be found in [18,19,20].

A service is a coherent and reusable block of system functionality. A service may
include other services for re-use. A protocol of a role constrains the runtime execution
of a service of the implementing agent. It is an abstract specification of a service, and
contains information such as pre/post conditions and invariants of the service. Fine-
grained control over agent execution is achieved by constraining the services agents
provide with protocols from roles they take. The recursive nature of roles, agents,
protocols and services ensures system scalability. A protocol can be activated to
monitor the execution of a service every time the service is run, or sample the service
execution randomly on a given interval.

A knowledge component is a modular unit of knowledge. It can aggregate other
knowledge components, allowing knowledge scalability and reusability in the system.
A knowledge component can be included into a role or an agent, allowing the knowl-
edge sharing, distribution or reuse in the system to be represented and modified at
runtime.

Agents and roles are embedded in environment zones, shown as aggregation in the
meta-model (see Fig. 2). The environment zones serve two functions in the multi-
agent system. It provides uniform non-discriminatory constraints on all agents, for
example, gravity applies to all human beings. It also provide infrastructure to facili-
tate agent services and hence simplify the internal design of agents.

3.2 Development-Time Classes

The ROADMAP meta-model describes runtime systems with concrete constructs that
are instantiated at runtime. During development-time, respective classes are created
according to the same structure and relationships. For example, the runtime role is
instantiated from the development time role class, while runtime agents are instanti-
ated from the development-time agent classes. Figure 5 shows the instantiation rela-
tionship.

www.manaraa.com

The ROADMAP Meta-model for Intelligent Adaptive Multi-agent Systems 61

We focus on the runtime constructs as agent systems are inherently dynamic and
the runtime behaviour is of more interest to us.

Fig. 5. Constructs in the meta-model are instantiated from their respective development-time
classes

4 Example Applications of the ROADMAP Meta-model

In this section we present two example applications of the ROADMAP meta-model to
illustrate its applicability and the potential benefit for adopting the meta-model.

4.1 The ROADMAP Methodology

The ROADMAP methodology [6] is designed to support the development of complex
open systems. It extends the Gaia methodology [15] with formal environment and
knowledge models, and a dynamic role hierarchy to constrain behaviour of agents in
the organization. The meta-model was formulated when we attempted to isolate the
key concepts in ROADMAP that enable the development of open systems. The key
concepts are considered general enough to be useful to other researchers and the
sharing of such knowledge is the motivation of this paper.

Figure 6 shows the revised structure of the ROADMAP models. The models are
grouped into three categories. The environment model and the knowledge model
contain reusable high-level domain information. The use-case model, interaction
model, role model, agent model and acquaintance model are application specific. The
protocol model and service models describe potentially reusable low level software
components.

www.manaraa.com

62 T. Juan and L. Sterling

The ROADMAP methodology closely implements the ROADMAP meta-model.
The meta-model can be mapped one-to-one directly onto the shaded models without
re-arrangement, as the shaded models contain development-time classes to instantiate
constructs in the meta-model (as shown in Figure 5).

Role Model

Agent Model

Protocol Model

Service Model
Knowledge

Model

Environment
Model

Use Case Model

Interaction
Model

Acquaintance
Model

Application Specific
Models

Domain Specific
Models

Reusable Services
Models

Fig. 6. The models within the ROADMAP methodology

By conforming to the meta-model, the ROADMAP methodology inherits its desir-
able characteristics and is suitable for developing open, intelligent and adaptive sys-
tems. This example shows the applicability of the ROADMAP meta-model.

4.2 Custom AOSE Methodologies by Reusing AOSE Features

In our earlier work [8,9], we described an approach to create reusable modular AOSE
features by isolating general-purpose common features from existing AOSE method-
ologies. The remaining parts of the methodologies are then componentized into spe-
cial purpose "value-adding" features. This approach empowers the developer to
assemble a methodology tailored to the given project by putting appropriate AOSE
features together, much like developers building applications from third party off-the-
shelf components.

The above approach allows the re-use of methodology features. We envisage that
the methodology becomes a living artifact of the project, and changes according to
project requirements. Methodology features encapsulate techniques, models, CASE
tools and development knowledge such as design patterns. Methodology features can
be created to handle particular new quality attributes such as privacy, and be deployed
into a project when appropriated.

www.manaraa.com

The ROADMAP Meta-model for Intelligent Adaptive Multi-agent Systems 63

The benefit of the above approach is obvious. Instead of creating incompatible
techniques, models and CASE tools for each methodology, modular and reusable
solutions can be created once, and shared within different methodologies. With this
approach, specialized features, such as support for safety in medical applications, is
more accessible to developers than possible before. This represents significant saving
in development cost and learning cost, investment.

The ROADMAP meta-model can be used to ensure semantic consistency between
methodology features. By conforming to the same meta-model, the methodology
features share the same basic definition for agent constructs such as agents and roles.
We expect this to improve interoperability and enables features originated from dif-
ferent methodologies to work together without conflicts.

A role in the ROADMAP meta-model is sufficiently flexible and expressive for
AOSE features to base their quality engineering activities on. It is a suitable construct
for expressing various quality attributes addressed by different AOSE features, with-
out committing to any agent architecture.

It is worth noting that specific quality attributes are not always required throughout
the entire system. For example, politeness may only be required at the user interface,
while privacy is required for a set of agents that can access the user's personal infor-
mation. As a general observation, for the entire system, functionalities need to be
modeled and developed. For localized parts of the system, quality attributes may need
to be modeled and engineered. The roles in the ROADMAP meta-model allow run-
time representation of functional requirements throughout the entire system, and also
allow quality attributes to be represented on a localized basis. This allows precise
application of engineering effort and avoids paying unnecessary engineering over-
head to other parts of the system.

5 Informal Evaluation and Related Work

A meta-model has the potential to ensure consistency between various methodologies,
CASE tools, programming languages and frameworks. Indeed, the meta-model for
the OO paradigm [2], often known as the Object Model, plays a unifying role for
OOSE. Consistent support covering all aspects of software development is a key
prerequisite for the acceptance of a software paradigm by mainstream industry prac-
titioners.

By adopting the meta-model, the conforming methodologies, tools and languages
will inherit the strengths and weaknesses of the meta-model. It is therefore important
to validate any meta-model carefully. In this section, we informally evaluate the
ROADMAP meta-model using eight criteria. Related work on the AALADIN meta-
model is also evaluated using the criteria.

www.manaraa.com

64 T. Juan and L. Sterling

5.1 Evaluation Criteria

The proposed evaluation criteria are:
1. Runtime scalability of the system
2. Runtime representation of requirements and quality attributes
3. Abstraction of knowledge from functionalities
4. Modularization of knowledge
5. Variable level of agent characteristics at runtime
6. Variable level of quality attributes at runtime
7. Simplicity
8. Ease of learning.

We explain each in turn. Note that we are not claiming that this is a complete set of
criteria to evaluate meta-models.

Runtime scalability of the system: The purpose of AOSE is to simplify the
development of industry strength applications. Therefore a meta-model should
promote scalability of systems to accommodate the application complexity. Adaptive
systems in open environments should be able to scale up and down at runtime
depending on the usage.

Runtime representation of requirements and quality attributes: As discussed in
Section 2, requirements and quality attributes should be represented at runtime,
allowing agent behaviour to be validated within the organization. After behaviour
changes in adaptive systems, the correctness of the system and other quality attributes
are still assured, if agent behaviour complies with the changed roles. Furthermore,
such specification (or representation) of requirements and quality attributes should be
clearly separated from the implementation.

Abstraction of Knowledge from Functionalities: A meta-model should clearly
separate agent knowledge from low-level functionalities. Consequently meth-
odologies, tools and languages implementing the meta-model should discourage
developers from hard-wiring knowledge into functional code. The knowledge and the
functionalities can then be developed, reused, and maintained separately, at a much
lower cost.

A meta-model adhering to this principle also facilitates engineering of quality at-
tributes at the knowledge level.

Modularization of Knowledge: Knowledge should be developed and maintained in
modular units with high cohesion and low coupling. The modular approach localizes
potential faults and enables easy sharing and re-use of knowledge.

Variable Levels of Agent characteristic at Runtime: We expect a meta-model not
to place arbitrary constraints on the level of agent characteristics such as level of
intelligence, autonomy, pro-activeness and reactiveness. For example, when it is

www.manaraa.com

The ROADMAP Meta-model for Intelligent Adaptive Multi-agent Systems 65

desirable, agents in the system should be allowed to become much more autonomous
at runtime, without compromising the overall system integrity.

Variable Levels of Quality Attributes at Runtime: In addition to representing
quality attributes at runtime, a meta-model should allow the nature and level of
quality attributes to be changed at runtime. For example, when hacker attacks are
identified, security at relevant parts of the system should be tightened. If the attacks
threaten the reliability of the system, reliability may be nominated as a new quality
attribute and agents in the system should start working to achieve it.

Simplicity: A meta-model should not be unnecessarily complex, so the resulting
methodologies, tools and languages don’t inherit the complexity and unnecessarily
burden the development of systems.

Ease of Learning: For better acceptance of AOSE, a meta-model should be easy to
learn and understand by industry practitioners. In addition to being simple, the meta-
model should also be similar to existing approaches such as OOSE, so the user can
leverage their existing knowledge for easy transition.

5.2 Evaluation of the ROADMAP Meta-model

The ROADMAP meta-model is scalable at runtime, as all runtime entities can recur-
sively aggregate themselves. The ability for roles and agents to modify other roles
and agents allow the system to scale up and down at runtime.

As detailed in Section 3, ROADMAP roles can represent the system requirements
and quality attributes, with various role attributes. Having separate hierarchies for
roles and agents ensures clear separation between the specification and the imple-
mentation of the system. The presence of knowledge component in the meta-model,
and the ability to aggregate other knowledge components, indicates knowledge is
abstracted away from functionalities (agent services) and managed in a modular hier-
archy.

The goals, evaluation functions and safety responsibilities are flexible enough to
encode different levels of agent characteristic and quality attributes. The ability to
modify roles at runtime ensures no arbitrary constraints are set on levels of agent
characteristics and quality attributes in the system at runtime.

The meta-model is very similar to the OO approach as accessing agents through
roles is similar to accessing objects through interfaces, and constraining services with
protocols is similar to constraining object methods with function signatures in inter-
faces. The meta-model is considered close to OO and easy for developers to learn and
understand. The similarity with OO suggests the meta-model is almost as simple as
OO and should not impose unnecessary complexity and burden during development.

The ROADMAP meta-model fulfils these evaluation criteria well.

www.manaraa.com

66 T. Juan and L. Sterling

5.3 Evaluation of Related Works

AALAADIN [4] is a well known meta-model for multi-agent systems based on the
concept of agents, groups and roles. Figure 7 shows the structure of AALAADIN.

Role

Agent

Group

playsis member

Fig. 7. Structure of the AALAADIN meta-model

AALAADIN agents are atomic and cannot aggregate other agents or groups, while
AALAADIN roles are not known to aggregate in anyway. This restricts scalability of
systems. The AALAADIN model was then extended in [13], allowing an agent to be
atomic or a group (see Figure 8). The extension improves scalability. However, roles
can now be part of a group and therefore part of an agent. The lack of clear separation
between specification and implementation is undesirable. Both versions of
AALAADIN use roles and groups to capture system requirements. However, without
concrete and detailed definition for roles and groups, we cannot determine how ef-
fective the representation is.

Role

Agent

Group

plays

is member

Atomic
Agent

represented as

Fig. 8. Structure of the extended AALAADIN meta-model

Knowledge components are not present in either version of AALAADIN, sug-
gesting abstraction of knowledge from functionalities and modularization of knowl-
edge are not supported. Roles are not known to change dynamically at runtime in
either version of AALAADIN, implying variable levels of agent characteristic and
quality attributes are only possible during development time, not at runtime. Both

www.manaraa.com

The ROADMAP Meta-model for Intelligent Adaptive Multi-agent Systems 67

meta-models are simple, and although they do not map easily to the OO approach like
the ROADMAP meta-model does, they are relatively easy to learn and understand.

6 Conclusion and Future Work

This paper has presented challenges in engineering software quality attributes for
intelligent adaptive systems in open environments. We developed a meta-model to
handle these challenges. The meta-model does not solve application-specific engi-
neering problems, but provides a clean high-level structure where engineering issues
can be grouped, classified and accommodated. Infrastructure to support these issues
can then be put in place progressively with consistency. By understanding our design
of the ROADMAP meta-model, developers of AOSE methodologies, tools, pro-
gramming languages and frameworks should gain insight into the challenges in de-
veloping intelligent adaptive systems in open environments. By adopting the
ROADMAP meta-model, the resulting product may inherit the desired characteristics
and better support such systems. We described two applications of the meta-model,
and provide some solid initial validation.

In future, we wish to conduct more formal validation and apply the meta-model to
other areas of agent research.

Acknowledgements. We like to thank our colleagues at the Intelligent Agent Lab,
University of Melbourne and Andrea Omicini for their valuable feedback on this
paper. The first author acknowledges support from a part studentship from the Smart
Internet Cooperative Research Centre. The second author is partially supported by
Discovery Project DP0209297 from the Australian Research Council.

References

1. Beasley, D., An overview of genetic algorithms: Part 1, fundamentals, University Com-
puting 15, 58–69, 1993.

2. Booch, G. Object-Oriented Analysis and Design (2nd edition). Addison-Wesley: Reading,
MA, 1994.

3. Carley, K. and Gasser, L., Computational Organization Theory, Multiagent System: a
modern approach to distributed artificial intelligence, Weiss, G. (ed). MIT Press, Cam-
bridge, Mass, 1999. 299–330

4. Ferber, J and Gutknecht, O., A meta-model for the analysis and design of organizations in
multi-agent systems, Proc. 3rd Int. Conference on Multi-Agent Systems (ICMAS'98),
IEEE Computer Society, 1998, 128–135

5. Huhns, M. and Stephens, L., Multiagent Systems and Societies of Agents, Multiagent
System: a modern approach to distributed artificial intelligence, Weiss, G. (ed). MIT
Press, Cambridge, Mass, 1999. 79–120

6. Juan, T., Pearce, A. and Sterling, L., ROADMAP: Extending the Gaia Methodology for
Complex Open Systems, Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), p3–10, Bologna, Italy, July
2002.

www.manaraa.com

68 T. Juan and L. Sterling

7. Juan, T. and Sterling, L., A Meta-Model for Intelligent Adaptive Systems in Open Envi-
ronments (poster), Proc. 2nd Int. Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), Melbourne Australia, July, 2003

8. Juan, T., Sterling, L., Martelli, M. and Mascardi, V., Customizing AOSE Methodologies
by Reusing AOSE Features, Proc. 2nd Int. Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), Melbourne Australia, July, 2003

9. Juan, T., Sterling, L. and Winikoff, M., Assembling Agent-Oriented Software Engineering
Methodologies from Features, in the Proceedings of the the Third International Workshop
on Agent-Oriented Software Engineering, at AAMAS'02, Bologna, Italy, 2002

10. Kendall, E., Agent Software Engineering with Role Modeling, Proc. 1st Int. Workshop on
Agent-Oriented Software Engineering, Limerick, Ireland, 2000, 163–170

11. Omicini, A., SODA,: Societies and Infrastructures in the Analysis and Design of Agent-
Based Systems, Proc. 1st Int. Workshop on Agent-Oriented Software Engineering, Lim-
erick, Ireland, 2000, 185–194

12. Osterweil, L. and Clarke, L., Continuous Self-Evaluation for the Self-Improvement of
Software, in Self-Adaptive Software, Robertson, P., Shrobe, H. and Lagada, R. (eds).
2000, Springer-Verlag: New York, NY. P.27–39

13. Parunak, H.V.D. and Odell, J., Representing Social Structures in UML, Proc. 2st Int.
Workshop on Agent-Oriented Software Engineering, Montreal, Canada, 2001, 1–16

14. Pressman, R., Software Engineering: A Practitioner's Approach, 4th edition, McGraw-
Hill, 1997

15. Wooldridge, M., Jennings, N. and Kinny, D. The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems 3 (3).
2000, 285–312.

16. Zambonelli, F., Jennings, N. and Wooldridge, M. Organizational Abstractions for the
Analysis and Design of Multi-Agent Systems, Proc. 1st Int. Workshop on Agent-Oriented
Software Engineering, Limerick, Ireland, 2000, 127–141

17. IBM, Autonomic Computing, http://www.research.ibm.com/autonomic/
18. Ferber, J., Gutknecht, O. and Michel, F., From Agents to Organizations: an Organizational

View of Multi-Agent Systems, Proc. 4th Int. Workshop on Agent-Oriented Software En-
gineering, Melbourne, Australia, 2003,in this volume

19. Yan, Q., Mao, X., Zhu, H. and Qi, Z., Modelling Multi-Agent Systems with Soft Genes,
Roles and Agents, Proc. 4th Int. Workshop on Agent-Oriented Soft-ware Engineering,
Melbourne, Australia, 2003,in this volume

20. Odell, J., Van Dyke Parunak, H., Brueckner, S. and Sauter, J., Temporal Aspects of Dy-
namic Role Assignment, Proc. 4th Int. Workshop on Agent-Oriented Soft-ware Engineer-
ing, Melbourne, Australia, 2003,in this volume

21. Russell, S. and Norvig, P., Artificial intelligence: a modern approach, Prentice Hall, 1995.
22. Yu, E. and Mylopoulos, J., Understanding "why" in software process modelling, analysis

and design, Proc. of 16th Int. Conference on Software Engineering, Sorrento, Italy, May,
1994

23. van Lamsweerde, A., Requirements engineering in the year 00: a research perspective,
Proc. of 22nd Int. Conference on Software Engineering, Limerick, Ireland, June, 2000

24. Chung., L (Ed.), Nixon, B., Yu, E., Mylopoulos, J. and Nixon, B., Non-Functional Re-
quirements in Software Engineering, Kluwer Academic Publishers, October, 1999

25. Robertson, P., Shrobe, H. and Laddaga, R. (eds.), Self-adaptive software, Proc. of 1st int.
workshop of self-adaptive systems, (IWSAS'00), Oxford, UK, Springer Verlag, April,
2000

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 69–84, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Modeling Deployment and Mobility Issues in Multiagent
Systems Using AUML

A. Poggi1, G. Rimassa1, P. Turci1, J. Odell2, H. Mouratidis3, and G. Manson3

1 Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Parma
Parco Area delle Scienze 181A, 43100 Parma, Italy

+39 0521 905708
{poggi,rimassa,turci}@ce.unipr.it

2 James Odell Associates, 3646 W. Huron River Drive
Ann Arbor, MI USA 48103

+1 (734) 994-0833
email@jamesodell.com

3Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, S1 4DP, England

+44 (0) 114 2225 888
{haris,g.manson}@dcs.shef.ac.uk

Abstract. This paper demonstrates how UML can be exploited and extended to
model the deployment of a multiagent system at the agent level. This is
accomplished by extending the formally-based UML 2.0 metamodel to support
the semantics of agents, mobile agents and their supporting platforms.
Additionally, the UML-based notation, used to model the deployment of a
multiagent system, takes advantage of stereotypes to associate an agent-oriented
semantics with the model elements used in the diagram. A primary objective
of this paper is to demonstrate that the Agent UML (AUML) deployment
diagram can be successfully applied to real-world applications. This AUML
work is organized as an activity within the FIPA Modeling Technical
Committee.

1 Introduction

Software engineering methodologies were and are essential, especially in industry, to
improve software productivity, lowering the costs and ensuring a high level of
quality. Most people involved in multi-agent systems research realize that a complete
modeling language and a complete agent-based development methodology, that
covers all phases and activities of the software lifecycle, are necessary in order to take
advantage of the agent paradigm and for agent-based technology to be widely adopted
by industry.

The research on agent-oriented software engineering is based on the possibility to
model a software system at the agent level of abstraction [6][7][12][15][19]. This
level of abstraction considers agents as atomic entities that communicate to
implement the functionality of the system. Another promising feature of software

www.manaraa.com

70 A. Poggi et al.

agents is mobility. Mobile agents are software entities that can migrate autonomously
throughout a network from host to host. This means they are not bounded to the
platform they begin execution. Mobile Agents are emerging as an alternative
programming-concept for the development of distributed applications [4][5][14][18].
So far, most of the work on the area of mobile agents has been focusing on the
technology itself, and the development of agent frameworks to support mobility.

A fundamental agency trait that is captured and modeled by most AOSE
methodologies is the intentionality of an agent; an external observer can describe an
agent by ascribing goals and intentions to it. When taking such an intentional stance,
the agent coupling with its environment is described in terms of the agent choosing
some states of affair over others and acting on its environment trying to bringing them
about. Adopting the intentional stance, mobility becomes more than just an
infrastructure service; instead, moving is an especially effective way for an agent to
act on its environment (if you cannot change your environment, change environment).
While the intentional stance is a quite useful one to take in the requirement capture
and design models (the goal concepts drives the requirement engineering process in
[12]), we feel that it is less fit when describing the deployment aspect of the system.
This is because when modeling deployment, one is more concerned with system
manageability and environment description.

As evinced from an analysis of the majority of the proposed languages and
methodologies, a great effort is spent in defining new metaphors, symbols and
diagrammatic notations. But despite this effort the modeling languages proposed still
remain incomplete. In particular, up to now, none of the existing agent oriented
modeling languages provide concepts and notations to fully capture the multiagent
system deployment. Considering mobility, very little work has taken place in defining
concepts and notations to capture and model mobile agents. Mobile agents are a
crucial part in most agent-based systems and the lack of models to capture them
restricts the usefulness of the existing methodologies. Only recently (2001) work was
initiated trying to capture mobile agents during the analysis and design stages of the
development. Very preliminarily work has been initiated by introducing some
concepts to capture mobility at the MaSE methodology [9].

In this paper we consider Agent UML (AUML) [1][15], a modeling language
based on UML. The greatest merit of AUML is to use those artifacts that support the
development environment which strictly relate to the nearest antecedent technology:
object oriented software development. UML is not a methodology by itself, but a
suggested notation to be used within the framework of a methodology. The same is
true of AUML. The AUML work is organized as an activity within the FIPA
Modeling Technical Committee [10]. Initially, the FIPA AUML work was concerned
with agent-based class diagrams and interaction diagrams. Other UML diagrams will
similarly be exploited in the future in order to cope with the special requirements of
multiagent systems. Additionally, new diagrams might be included in AUML to
tackle particular concepts not present in UML.

In this paper, we focus on a new subset of an agent-based UML extension for the
specification of the deployment of a multiagent system, using and extending UML
deployment diagram. In particular, we aim at showing how UML can be exploited
and extended to design the deployment of (mobile) multiagent systems at the agent

www.manaraa.com

Modeling Deployment and Mobility Issues in Multiagent Systems Using AUML 71

level. The presented notation takes advantage of stereotypes to associate an agent-
oriented semantic with the model elements involved in the diagram.

The next section deals with the relevance and the peculiarity of the configuration
and deployment in multiagent systems. Section three describes the rationale used in
defining the AUML deployment diagram, specifying the standard representation for
its elements in UML models. In particular the first subsection describes how UML
can be extended in order to define complete, accurate and unambiguous
representation of multiagent system deployment. The second subsection studies in
depth the topic of acquaintance relationship between agents. The fourth section
explains the notational representation of the semantic concepts defined in the previous
section. Section five illustrates how AUML deployment diagram can be successfully
applied to a real-world application, since it supports all practical requirements
commonly encountered. Finally, the sixth section concludes with a discussion about
AUML deployment diagram features and future work.

2 Multiagent System Configuration and Deployment

The role of the deployment diagram in UML is to express the configuration of run-
time processing nodes and the components, processes, and objects that reside on these
nodes [16]. In several systems, these aspects are quite evident and a deployment
diagram does not add real value to the modeling phase. In these cases it can be useful
to produce one a posteriori for documentation completeness. Complex systems with
several nodes with significantly different computational responsibilities may benefit
from the deployment diagram right from the beginning.

Regarding the MAS, the deployment diagram has to represent hosts (servers, front-
ends, etc.), resources, physical agents and their acquaintance graphs, and, depending
on the framework used in the implementation, MAS platforms. The deployment
diagram is very useful to model highly distributed MAS, that is systems in which it is
important to visualize the system’s current topology and distribution of components
and agents, and to reason about the impact of changes on the topology, such as mobile
agent systems. As proposed by Mouratidis et al [14] an approach to capture the
concept of mobile agents, is to introduce concepts and notations (or use existing ones)
to give answers to questions that arise from the use of mobile agents such as why a
mobile agent moves from one platform to another, where the agent moves to, when
the agent moves, and how it reaches the targeted platform. Thus, regarding mobility
the deployment diagram should provide answers to those questions.

An important observation to be made at this point is the difference that exists
between the architecture of a MAS and its implementation-independent configuration
at deployment time. The architecture of a MAS is a structure that portrays the
different kinds of agents and the relationships among them. The architectural
description is studied and fixed when designing the MAS. A configuration is an
instantiation of an architecture with a chosen arrangement and an appropriate number
of agents. One frozen architecture can lead to several configurations. The
configuration is tightly linked to the topology and the context of the place where the
MAS is rolled out. The architecture is designed so that the possible configurations
cover the different system organizational layouts foreseeable in the context of a

www.manaraa.com

72 A. Poggi et al.

project. Agents can be arranged among various machine configurations in order to
more effectively use available processing power and network bandwidth.

The deployment of a multiagent system therefore is driven by:
- The system organizational layout: the structure of the company, etc.
- The network topology: technical environment and its constraints such as the

topologies characteristics, the network maps and data rates, data servers
location, gateways, firewalls, etc.

- The interests area: where are the stakeholders (users, system managers,
providers, etc.)

In order to describe the configuration description of a MAS, at deployment time,
UML models must represent agent constructs, capturing their structure and semantics.
Since UML predates the agent oriented software engineering, it does not contain
model elements that express the structure and semantics of multiagent system. UML
was designed to be extensible, however, and provides standard extension mechanisms
for defining new model elements. These mechanisms can be used to define new
model elements to represent new entities like agents, their acquaintances and MAS
platforms. We use those mechanisms in our work to extend the UML deployment
diagram enable the modeling of Multiagent systems. We call the extended diagram
derived from our work, AUML Deployment diagram.

3 AUML Deployment Diagram Semantics

The aim of this section is to provide complete semantics for all modeling notations
used in the AUML deployment diagram. While it may appear lengthy, it is important
to be accurate for the sake of clarity.

3.1 Extending UML Metamodel

A major feature of the multiagent system approach to software development is the
reliance on the social level of abstraction: this allowed researchers in the MAS field to
take inspiration and leverage results from social sciences, where they deal with
complex and dynamically changing systems. However, the shift towards a social
perspective in multiagent systems should not suggest forgetting the main attributes of
the single agent, namely autonomy and situatedness. When inserted into a society,
each member agent becomes situated in an hybrid environment, arising partly from
social and institutional entities and partly from entities external to the agent society.
The diagrammatic representation of a concrete MAS should be able to fully depict
this hybrid situatedness, showing agents and their social and natural environment as a
whole. The social aspect of agent situatedness can be captured by an oriented graph
connecting agents with arcs. This graph is called “acquaintance” graph.

In simple client/server systems, usually it is assumed that clients know the server
beforehand but the server does not know a client until it is contacted by it. These strict
assumptions, common in multi-tier client/server systems, make the acquaintance
graph trivial, which explains why it is generally not included in the system diagrams,
but a MAS architecture can result in arbitrary acquaintance graphs, so they have to be
explicitly represented.

www.manaraa.com

Modeling Deployment and Mobility Issues in Multiagent Systems Using AUML 73

From the above considerations it follows that even if the deployment diagram is
part of the architectural models and its scope is to model the static deployment view
of a system, some aspects of MAS deployment diagrams are related to the behavioral
models. The AUML deployment diagram therefore must be more expressive than the
corresponding reference UML deployment diagram, and must include the
acquaintance relationships between agents.

 The architecture of UML is based on a four-layer metamodel structure; in our
discussion about the semantics of MAS deployment diagram we consider the user
objects, model and metamodel layers. Moreover in order to allow an accurate
interpretation of the semantics choices, supporting our proposal, we make a clear
distinction between a conceptual entity, its instances, its representation or
implementation and the instances of its representations.

Having said this, in the following we try to give a precise definition of the terms
involved in the deployment diagram, mapping them in UML model elements.

For the following, refer to Figure 1.
We consider a starting point of our dissertation the definition of the model element

“agent” as a stereotype of the metaclass Class [3][2]. The stereotype extension
mechanism provides a way of defining virtual subclasses of UML metaclasses with
new metaattributes and additional semantics.

 Classifier

Class

isActive : boolean

Interface

DataType

Node Artifact Component

*
*+implementationLocation

* +deployedComponent
*

* +implementationLocation

*
+implementation

*

ModelElement

*

*

+container
*

+resident*

ElementResidence

visibility : VisibilityKind

Fig. 1. UML 1.4 Core Package - Classifiers

What is applicable to a metaclass Class is therefore, by definition, applicable to an
Agent Class. Agent Class defines a set of elements, that we call “Agents”1 (instances
of the Agent Class), which have the same structural and behavioral characteristics.
Moreover Agent Class is a conceptual element declared in an intensional way as a
collection of features and inherits participation in Associations. The stereotype
«acquaintance» is applied to an Association between Agent Classes to denote that
messages may be sent between their instances.

1 An Agent has at least one thread of control and runs concurrently with other Agents; Agent

Class is therefore a subclass of Class with the attribute “isActive” always true.

www.manaraa.com

74 A. Poggi et al.

An Artifact is a concrete element2 that we can define with a good approximation as
a structured set of bytes. The implementation of an Agent Class can be memorized in
one or more Artifacts. Executable Artifacts can be loaded in memory and be
associated to one or more executable threads. If an Artifact contains an
implementation of an Agent Class, we can say that the copy, in memory, is able to
create concrete elements that implement Agents, instances of the Agent Class itself.
An Artifact may constitute the implementation of a deployable Component.

At this point a brief digression concerning the definition of the Component model
element is necessary, given its fundamental role in the deployment diagram.

3.1.1 Component: Attempt at Clarity
While analyzing the UML Reference Manual and the submissions to UML 2.0 RFP, it
seems very difficult to reach an agreement on the definition of the Component model
element.

We try to outline how the definition and consequently the role of the Component
model element is changed throughout UML 1.3, 1.4, 1.5 and the submissions to UML
2.0 RFP. Finally we aim at giving a satisfactory and functioning definition of the
component role inside the AUML model. The scope is to properly define a
component and its relationship with files, classes, interfaces and mainly agents in
order to provide the correct semantics to the modeling notation used in AUML
deployment diagram.

In the UML Reference Manual the component is seen as an element belonging to
the implementation domain. However, the Component definition in the UML 1.3
model is not satisfactory. Cris Kobryn [13], co-chair of the UML Revision Task
Force, said: "The current semantics for the component construct are vague and
overlap the semantics of related classifiers, such as class and subsystem. In order to
fully support component-based development, the semantics of components should be
refined and the overlap with related constructs should be reduced".

UML 1.4 proposes a revision of the Component definition in which the
implementation level is shifted from Component to Artifact. The Component is no
longer explicitly defined as a physical piece of implementation and it is no longer the
implementationLocation of the ModelElements, but only their container. The
Component is implemented by one or more Artifacts (see Figure 2); the idea that
Artifacts “contain” the implementation of the Component comes to light.
ModelElements and Artifacts are not implemented or owned by the Component, but
they reside in it. This can be seen as a move towards a vision of the Component as a
conceptual element instead of as an element belonging to the implementation domain.

The revision of the definition of the Component element by UML 1.4 (and now
UML 1.5), however, has been insufficient to solve the problems brought up for the
UML 2.0 version. When examining the third revised version of the OMG RFP
submission [17], concerning the UML 2.0 Superstructure3, we can see significant

2 In general we use the term “concrete element” to denote an active process, a dynamic library,

an instance of an Implementation Agent Class, etc. We use the tem “conceptual element” to
denote for example an Agent Class.

3 In the following we will use the simplified expression UML 2.0 to denote the revised
submission to OMG RFP, concerning the UML 2.0 Superstructure.

www.manaraa.com

Modeling Deployment and Mobility Issues in Multiagent Systems Using AUML 75

changes as far as Component is concerned. In UML 2.0, a Component represents a
modular part of a system and its definition is given in terms of provided and required
interfaces. Component may be made manifest by one or more Artifacts; between
Artifact and Component there is an “implements” relationship. A Node is associated
with a deployment of an Artifact and it is also associated with a set of elements, e.g.
Components, which are deployed on it. The last one is a derived association in the
sense that these elements (e.g. Components) have one or more implementing Artifacts
that are deployed on the Node. In UML 2.0 the deployment diagram is the only form
of implementation diagram and its role is to show how Artifacts are allocated to
Nodes. It is plain that the Component is now no longer used solely at the
implementation level; instead it can now be employed as a conceptual element, as
well.

Another interesting aspect of UML 2.0 is the notion of the active class. Active
classes are those whose objects “owns a thread and can initiate control activity.” In
other words, active objects are very compatible with the definition of agent.
Furthermore, since the UML 2.0 metaclasss Component is a subtype of Class, then
components too inherit the proactive, autonomous nature of the active class.

Bearing this in mind, in this paper we consider Component as a conceptual
element. The Component is defined as a container of one or more Artifacts. The
property of the Component, as a conceptual element, is the property of being able to
host other conceptual elements, like Agent Classes. At the implementation level, the
meaning of the role “resident” (characterizing the Artifact) is that the Executable
Artifact, binding to the Component, contains code, which is able to create, at the
execution time, instances of the [implementation of the] Agent Classes, resident in the
Component.

Instance

ModelElement
(from Core)

DataValue SubsystemInstance Object

Classifier
(from Core)

* 1..*
+classifier

* 1..*
0..1

+owner

0..1

+ownedInstance0..*

NodeInstanceComponentInstance

+resident *

0..1

+resident

Fig. 2. UML 1.4 Common Behaviour – Instances

The meaning that we usually give to ComponentInstance is an instance of the
Executable Artifact associated to the Component itself. So when we speak of
ComponentInstance we refer to its executable part. If a Component hosts conceptual
elements, like Agent Classes, a ComponentInstance will host concrete elements,

www.manaraa.com

76 A. Poggi et al.

instances of the implementations of these conceptual elements; in this specific case,
concrete agents4.

A NodeInstance is an instance of a Node. A collection of ComponentInstances may
reside on a NodeInstance. In the metamodel each ComponentInstance that resides on
a NodeInstance must be an instance of a Component that resides on the corresponding
Node (see Figure 2).

Concerning mobile agents, as it was mentioned, they have the ability to migrate to
different nodes within the network. We define the NodeInstance they begin execution
as their origin, and the NodeInstance they stop execution, after finish their task, as
their destination. We define the intermediate path between the origin and the
destination as mobility path.

In the AUML deployment diagram we capture the mobile agents of the system in a
static nature (that means these diagrams do not capture dynamics (such as sequence)
of the movement). Such a diagram provides notations to capture the mobile agents of
the system, along with their origin, the destination, the nodes they might visit, and the
mobile agent’s mobility paths.

An AUML deployment diagram captures mobility if for any link, connected two
NodeInstances, with the stereotype «moves» the following holds:

- There is a corresponding Mobile Agent (MA)
- The origin, destination and mobility path of the mobile agent are specified.
The stereotype «moves» specifies the movement of the mobile agent from one

NodeInstance to another, and a note indicates the purpose of the movement. To
indicate the origin of the mobile agent we introduce the stereotype «home» and we
apply this stereotype to the model element Agent Class. The stereotype «destination»,
of the Agent Class, is introduced to specify the destination of the mobile agent. It
must be noticed that destination of a mobile agent can be its origin. For example
when a mobile agent is sent somewhere, obtain some information and returns back to
its origin to report the results. Finally we introduce the stereotype «visitor» to indicate
that the mobile agent visits a node.

3.1.2 Agent Platform: Relating to Middleware
Multiagent systems, as any software development approach, benefit from sound
methodology and notation but there is more to them. Concrete issues such as APIs,
libraries and infrastructure are also very important to achieve a success when adopting
MAS development in a software project. Among all the various UML diagrams, the
Component and Deployment Diagrams are the ones most tightly related to concrete
software infrastructures and middleware; therefore, when defining the AUML
Deployment Diagram, it is natural to consider the agent oriented middleware
standards and products available, to try and find useful abstractions to model them
within AUML.

FIPA issued a series of agent system specifications that had as their goal inter-
operable agent systems. In particular this work includes specifications for an abstract
architecture, which has, as natural expression, a set of object classes comprising an

4 The conceptual element Agent denotes an instance that originates from an Agent Class. The

term “concrete agent” denotes an instance that originates from an implementation of an
Agent Class

www.manaraa.com

Modeling Deployment and Mobility Issues in Multiagent Systems Using AUML 77

agent platform. An agent platform provides the physical infrastructure in which
agents can be deployed. FIPA agents leverage the facilities offered by the agent
platform for realizing their functionalities; moreover agent platform provides message
transport service and white and yellow page services to external agents resident on
other platforms.

We believe that agent middleware, and in particular FIPA compliant agent
platforms, have to play a fundamental role in the development of agent based
application and that information related to agent platforms has to be reported in the
AUML deployment diagram.

Two UML metamodel elements were considered: Subsystem, which seems more
appropriate for modeling the internal view of an agent platform and Component,
which seems to be the natural choice on the basis of its characteristic of exhibiting
services. Moreover, in the UML metamodel a Component is a subclass of Classifier,
and as a Classifier it may also have its own Features and realize Interfaces. This
assertion of “individuality” of the Component is important since it means the
component not only exposes the interfaces of artifacts deployed in it but it can
implement them directly.

As far as the revised submission to OMG RFP for the UML 2.0 Superstructure is
concerned, the things significantly change. The Component no longer realizes the
provided interfaces directly, instead, its parts jointly realize all interfaces offered by it.
The Subsystem is a kind of (subclass of) Component and can expose interfaces in
terms of elements that are visible from outside. A subsystem’s contained elements
have more cohesion and interaction with other element within the same subsystem
and less with elements in external subsystem. In this context it seems more suitable to
map the agent platform to the Subsystem model element. Since the UML 2.0
specifications still being finalized, the choice falls on the Component, seen more as an
infrastructure for agents deployed in it rather than as a mere agent container. But this
specification will be revised to take full advantage of the changes made to the UML
by the future version.

We therefore define the model element “agentPlatform” as a stereotype of the
metaclass Component. It should be noted that the concept of an agent platform does
not mean that all agents resident on an agent platform have to be co-located on the
same host computer. FIPA envisages a variety of different agent platforms from
single processes containing lightweight agent threads, to fully distributed agent
platforms built around proprietary or open middleware standards.

One AgentPlatform Component, therefore, can span more than one Node, if the
agents belonging to this platform are deployed on more than one Node.

The model element AgentPlatformInstance represents an instance of an
AgentPlatform Component and it can host concrete agents5.

While giving semantics to AUML Deployment Diagrams, this section also hinted
at how wide their domain is. Starting from the abstract classifiers view, they come as
far as encompassing actual middleware infrastructures. However, most software
projects tend not to include Deployment Diagrams in their deliverables; this is

5 An AgentPlatformInstance is a valid AgentPlatform Component instance if every instance in

it is a direct instance of some element in the system model, e.g. an Agent.

www.manaraa.com

78 A. Poggi et al.

because most distributed software systems nowadays follow very simple and fixed
deployment schemas.

On the other hand, the social stance advocated in multiagent systems modeling
increases the importance of the acquaintance relationship between agents. Moreover,
beyond the diverse acquaintance structures that can arise from social role modeling,
there are even more fundamental reasons to put the system deployment view near the
center of the stage when modeling multiagent systems.

Two such reasons are concreteness and situatedness: they are rooted in the very
notion of agency and will be further discussed in the next subsection.

3.2 Concrete and Situated Multiagent Systems

Considering the software engineering process in more detail, promoters of the MAS
approach generally stress its suitability for heterogeneous distributed systems. Those
systems are exactly the ones where deployment issues can become nontrivial and
deserve to be analyzed and addressed with properly designed techniques. In the
standard UML 1.4 specifications, the deployment diagram is nothing but the
expression of a special static model including Node elements (UML 1.4, Section
3.96.4), and can contain only very generic associations, such as communication
between nodes and dependency between components.

On the other hand, there is another UML diagram that nicely combines structural
interconnection information with interaction description: the collaboration diagram. A
Collaboration is the structure of the participants playing roles in the performance of a
specific task, whereas an Interaction is the communication pattern of the Instances
playing those same roles (UML 1.4, Section 2.10.1).

Among the several distinguishing properties that have been proposed as agency
traits, here we are interested in concreteness and situatedness. Concreteness is not
really an agency trait, but we use it here to compare concrete agents with abstract
roles. Using roles and their associations (static social model), along with role
interaction specifications (dynamic social model), provides a logical model of a MAS
society. However, actual acquaintance occurs between concrete agents, possibly due
to them playing a social role but also affected by their physical location and the
jurisdiction domains they belong to.

The second property, situatedness, is more fundamental. Even in single agent
modeling, an agent is always represented as immersed within an environment it can
interact with through sensing and acting. This means that the agent oriented approach
tries to model not just the system but also its boundaries. Mobility further enriches the
scenario; when taking the situated agent perspective, an agent perceives its relocation
as a sudden change of the environment. Depending on the data space management
policies in use, such change can be strongly discontinuous (some resources disappear,
others are suddenly available). When moving from a single agent to a whole MAS,
we notice that acquaintance is nothing but social situatedness: just like we used to
model the world outside a single agent describing which resources are known to the
agent and which sensing and acting interactions are possible, we now model the
society outside an agent describing its acquaintances and the social roles (i.e. the
possible conversation patterns) through which interaction occurs.

www.manaraa.com

Modeling Deployment and Mobility Issues in Multiagent Systems Using AUML 79

It is interesting to notice that when an agent acts on the environment it changes it,
but generally the change is limited to a small fraction of the whole world. Similarly,
when an agent is involved in a conversation, it generally modifies only a small
fraction of the society it lives in (e.g. the mental attitudes of the agent he is having a
conversation with). Therefore, we can characterize the agent environment (both
physical and social) as a slowly varying process with respect to the agent internal
processes.

We claim that collaboration diagrams, while quite well suited to MAS in general,
still are not appropriate to represent a concrete and situated MAS. This is for two
reasons, the first one related to concreteness and the second one to situatedness.

Dealing with concreteness, one finds out that the elements appearing in a
Collaboration are quite abstract, being roles played by various Classifier and
Association elements; this is fine for modeling social structure and interaction at a
logical level, but not to express the actual configuration of an agent society, made by
concrete agents and not simply by roles. Moreover, the mobility aspect is attached to
concrete agents and not to their social roles. Modeling mobility at the role level would
mean modeling the transfer of a social responsibility between agents deployed at
different locations, without any link to real code mobility.

The second reason is due to the Link element. A collaboration diagram ends up
representing Instances conforming to one or more ClassifierRole and Links
conforming to an AssociationRole. Messages are exchanged among Instances and
travel over Links. We want to model the social situatedness of an agent participating
in a MAS, so we would like the link to represent an arc of the acquaintance graph.

A Link is just a support for messages and its lifetime can be very short. Only Links
with a lifetime that spans several Interactions can be meaningful arcs of the
acquaintance graph. Therefore the model element Acquaintance Link, instance of an
Acquaintance Association, denotes a valuable or lasting acquaintance relationship
between concrete agents.

4 AUML Deployment Diagram Notation

A deployment diagram is a graph of nodes connected by communication associations.
A node in UML deployment diagram is an element that exists at run time and
represents physical hosts, that is a computational resource, generally having some
memory and processing capability, on which agents may be deployed. Graphically a
node is rendered as a cube (see Figure 3). Every node instance has a name, a textual
string, and a type. The most common kind of relationships among nodes are
associations that represent physical connections. In Figure 4 you see that the nodes
have names such as Client and AppServer. These terms are recognizable to the
developers within the organization because those are the terms they use on a daily
basis.

Generic components are depicted, as they are in UML standard, as rectangle with
two smaller rectangles jutting out from the left-hand side. The concrete agents may be
contained within the component instance symbols to indicate that the items reside on
the component instances. A concrete agent is rendered as rectangle with a name. Two

www.manaraa.com

80 A. Poggi et al.

primary forms of information may be supplied for an agent name: instance, and class.
The general form of describing the agent name in AUML is:

instance-name : class6

An important observation to make is that these diagrams contain concrete agents
and not agent classes. This means that a single agent icon can be an instance of one or
more agent classes (i.e., many agent roles can be played together by a single concrete
agent).

Agents belonging to the same agent platform are grouped together. An agent
platform is a kind of Component, indicating which agents are housed on the platform
itself. Every agent platform must have a name that distinguishes it from other
platforms; a name is a textual string.

Agents are connected to other agents by acquaintance relationships; this indicates
that one agent could communicate with the “known” agents by means of interactions
protocol. A directed graph is used to show the agent acquaintance graph. The directed
graph identifies communication pathways between concrete agents playing the roles
involved in an interaction scenario. A non-directed edge denotes that both concrete
agents, playing the roles, know each others.

Fig. 3. AUML deployment diagram

The mobile agents are represented with a stereotype that indicates the status of the
mobile agent (home, visitor, destination). The paths are represented as dashed lines,
with the arrows pointing towards the node that the mobile agent moves to. A double
arrow (both sides of the path) indicates the mobile agent moves both directions. When
a «destination» tag is not used, it is assumed by default that the mobile agent returns
to its home (origin).

6 UML 1 also includes the role specification. The difference between the notion of class and

role was not well defined. Both defined an entity that possessed structure and behaviour.
The only difference between the two was that roles were also involved interactive behavior.
In UML 2.0 therefore, classes depicted in interaction diagrams are referred to as “roles.”

concrete agent

agent platform

connection

node

acquaintance
relationship <<acquaintance>>

Deploys <<home>>
JoeAgent:PersonalA
gent

<<acquaintance>>

<<reside>>
<<reside>>

<<reside>>
UserPlatform:
APInstance

Joe’sPC:Client

UserProfileServer: AppServer

Deploys

:UserProfile
Archivist

:UserProfile
Manager

 <<moves>>

 Mary’sPC:Client

Deploys

MaryAgent:Pers
onalAgent

<<visitor>>
JoeAgent:Perso
nalAgent

Mobility relationship

Reason: obtain
information about Mary

www.manaraa.com

Modeling Deployment and Mobility Issues in Multiagent Systems Using AUML 81

5 Applying AUML Deployment Diagram

The main objective of this section is to prove that AUML deployment diagram can be
successfully applied to model mobile agents and real-world applications.

We focus our attention on CoMMA [8][11]system, an open, agent-based system
for the management of a corporate memory. CoMMA, a FIPA compliant agent
system implemented through the use of JADE framework, is the result of an
international project funded by European Commission.

CoMMA system uses agents for wrapping information repositories (i.e., the
corporate memory), for the retrieval of information, for enhancing scaling, flexibility
and extensibility of the corporate memory and to adapt the system interface to the
users. These tasks are performed through the cooperation among different kinds of
agents that can be divided in four sub-societies: document and annotation
management; ontology (enterprise and user models) management; user management
and agent interconnection and matchmaking.

The agents from the document dedicated sub-society are concerned with the
exploitation of the documents and annotations composing the corporate memory.
They will search and retrieve the references matching the query of the user with the
help of the ontological agents. The agents from the ontology dedicated sub-society are
concerned with the management of the ontological aspects of the information retrieval
activity especially the queries about the hierarchy of concepts and the different views.
The agents from user dedicated sub-society are concerned with the interface, the
monitoring, the assistance and the adaptation to the user. Finally the agents from the
interconnection dedicated sub-society are in charge of the matchmaking of the other
agents based upon their respective needs.

The deployment diagram can help a lot in focusing on the actual system, because
the CoMMA knowledge management solution is made by a highly distributed system
deployed over a structured, managed corporate network. Several possible deployment
strategies can be envisaged. Between these are: three-tier deployment, characterized
by a common database server tier, made by machines shared by the whole
corporation, and department based deployment, where the corporate intranet is
divided into various departments, and each one of them has its own database servers.

With the aid of the three-tier deployment scenario of the CoMMA system we
intend to show the use of the AUML deployment diagram. In addition, we assume
that some of the agents used in the system are mobile agents. This assumption helps
to demonstrate, in a real-life system, how AUML deployment diagram can be used to
model mobile agents.

5.1 CoMMA MAS Three-Tier Deployment Scenario

The Figure 4 depicts the three-tier deployment, so called because the physical
computers hosting the agents are divided into clients (client tier), application servers
(middle tier) and database servers (DB tier). Such a deployment strategy has the main
advantage of matching one of the most popular intranet structures.

www.manaraa.com

82 A. Poggi et al.

Fig. 4. CoMMA MAS Three-Tier Deployment

The agent acquaintance graph shows the case of two users logged into the system.
The first user, named Joe, belongs to the Lab A organizational unit and is currently
sitting in front of his PC. The second one, named Mary, belongs to the Lab B
organizational unit and is currently logged on the Guest PC of the Lab A, that is not
her home location. According to the three-tier architecture, only Interface Controller
agents live on the client machines (performing pure presentation) and only Annotation
Archivist agents live on the database servers (performing pure data management). The
middle tier, as in classical three-tier architectures, connects the client tier and the data
base tier (through Directory Facilitator and Annotation Mediator agents) and is where
the ontology and user model management occurs. In this deployment, the ontology
and the user model belong to the middle tier and not to the data base tier because they
are supposed to be much smaller in size than the annotation base and they are not
distributed.

In this deployment example, there is an agent platform spanning the whole Lab A,
another platform spanning the Lab B and a third platform that contains all the
Annotation Archivist agents managing the distributed annotation base. This means
that any agent within the Lab A has an a priori knowledge of the Directory Facilitator
living on the Lab A Server machine, so registering the User Profile Manager, the
Ontology Archivist and the Annotation Mediator with the local Director Facilitator is
enough to connect the user sub-society and the ontology sub-society.

www.manaraa.com

Modeling Deployment and Mobility Issues in Multiagent Systems Using AUML 83

The Interface Controller responsible for Mary runs on the Guest PC and is
acquainted with the Lab A User Profile Manager, since Lab A is the current location
for Mary; the User Profile Manager is acquainted with the Lab B User Profile
Archivist, since Lab B is the home location for Mary. The Annotation Mediator is a
mobile agent; this agent can move to the node where the Annotation Archivist, which
owns a high percentage of information required, resides.

6 Discussion and Conclusions

In this paper we made a proposal of an AUML deployment diagram, that is an UML
deployment diagram enhanced with agent based concepts, and we also described how
this kind of diagram can be used to model mobile agents. In addition, we use it to
describe the deployment of the CoMMA system

The actual adoption in the CoMMA project of a preliminary version of the notation
we are proposing provided some early feedback on the usefulness of an AUML
Deployment Diagram. However, more work needs to be done to gather more
comments within the AUML proponents and users; an issue that needs to be
addressed deals with non-social situatedness. An agent surroundings comprise not
only its acquaintances, but also several non-agent entities such as the resources it uses
and manages, the events it can perceive, the concrete actions it can perform. As an
example, the CoMMA system Deployment Diagram should have shown not only
agents and acquaintance links, but also resources (data repositories in the Knowledge
Management domain in the case of CoMMA project). Representing non-agent entities
and their connections with agents in the AUML Deployment Diagram requires further
study to integrate them in the UML metamodel, and it is left as subject for future
work.

References

[1] Agent UML - AUML Home Page. Available at http://www.auml.org.
[2] Bauer B., J. P. Müller, and J. Odell. Agent UML: A Formalism for Specifying Multiagent

Interaction. Agent-Oriented Software Engineering, Paolo Ciancarini and Michael
Wooldridge eds., Springer, Berlin, pp. 91-103, 2001.

[3] Bauer B., UML Class Diagrams: Revisited in the Context of Agent-Based Systems, In
Proc. of Agent-Oriented Software Engineering (AOSE), pp.1-8, Agents 2001, Montreal

[4] Brenner W., Z. Rüdiger, and W. Hartmut. Intelligent Software Agents: Foundations and
Applications. Springer-Verlag, pp. 55-67, Berlin, 1998

[5] Caglayan A., C. G. Harrison. Agent Sourcebook: A Complete Guide to Desktop, Internet,
and Intranet Agents. John Wiley, 1997

[6] Caire, G., P. Chainho, R. Evans, F. Garijo, J. Gomez Sanz, P. Kearney, F. Leal, P.
Massonet, J. Pavon, and J. Stark. Agent Oriented Analysis using MESSAGE/UML. In
Proc. Second International Workshop on Agent-Oriented Software Engineering (AOSE-
2001), Montreal, Canada, May, 2001, 101-107.

[7] Ciancarini P., and M.J. Wooldridge. Agent-Oriented Software Engineering. Lecture Notes
in Computer Science, 1957, Springer-Verlag, 2001.

www.manaraa.com

84 A. Poggi et al.

[8] CoMMA Project Home Page. Available at
http://www.ii.atosgroup.com/sophia/comma/HomePage.htm.

[9] Self A.L., A.S. DeLoach. Designing and Specifying Mobility within the Multiagent
Systems Engineering Methodology. SAC 2003, Melbourne, Florida, March, 2003.

[10] FIPA Modeling Technical Committee – Home Page – Available at
http://www.fipa.org/activities/modeling.html

[11] Gandon F., A. Poggi, G. Rimassa, and P. Turci. Multi-Agents Corporate Memory
Management System. - Applied Artificial Intelligence, 9-10 (22): 699-720, 2002.

[12] Giunchiglia F., J. Mylopoulos, and A. Perini. The Tropos Software Development
Methodology: Processes, Models and Diagrams. In Proc. AAMAS Conference, 2002.

[13] Kobryn C., Modeling Components and Frameworks with UML, Communications of
ACM, Vol. 43 No. 10, October 2000.

[14] Mouratidis H., J. Odell, and G. Manson. Extending the Unified Modeling Language to
Model Mobile Agents. In OOPSLA 2002 Agent-Oriented Methodologies Workshop. 2002.
Seattle, WA.

[15] Odell J., H. van Dyke Parunak, and B. Bauer. Extending UML for agents. In G. Wagner,
Y. Lesperance, and E. Yu, editors, Proc. of the 2nd Int. Workshop on Agent-Oriented
Information Systems, Berlin, 2000. iCue Pub-lishing.

[16] OMG, UML 2.0 Superstructure RFP, Object Management Group, document ad/00-09-02,
issued September 15, 2000.

[17] OMG, U2 Partners' UML2 Superstructure, 3rd revised submission, Object Management
Group, document ad/03-04-01, issued April 18, 2003.

[18] White J. E. Mobile Agents. Software Agents, Jeffrey Bradshaw ed., MIT Press,
Cambridge, MA, 1997, pp. 437-472.

[19] Wooldridge M., N.R. Jennings, and D. Kinny. The Gaia Methodology for Agent-Oriented
Analysis and Design. Kluwer Academic Press, 2000.

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 85–95, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Knowledge-Based Methodology for Designing Reliable
Multi-agent Systems

Mark Klein

Massachusetts Institute of Technology
Cambridge MA 02139

(617) 253-6796
m_klein@mit.edu

Abstract. This paper describes a methodology that system designers can use to
identify, and find suitable responses for, potential failure modes (henceforth
called ‘exceptions’) in multi-agent systems.

1 Introduction

Multi-agent systems must be able to operate robustly despite many possible failure
modes (‘exceptions’) that can occur. Traditionally, multi-agent system (MAS)
designers have largely relied on their experience and intuition in order to anticipate all
the ways their systems can fail, and how these problems can best be addressed. While
methodologies such as failure mode effects analysis (FMEA) do exist [1], they simply
provide a systematic procedure for analyzing systems, without offering specific
insights into what exceptions can occur or how they can be resolved.

This approach is becoming untenable, however, as the scale, heterogeneity and
openness of multi-agent systems increases. Multi-agent systems, with their promise of
self-organized behavior, are being looked to as a way to smoothly and rapidly
integrate the activities of large collections of software entities that may never have
worked together before. The agents in such ‘open’ contexts will not have been
designed under centralized control, and must operate on the infrastructures at hand.
Such systems must be able to operate effectively despite a bewildering range of
possible exceptions. We have identified two main classes of exceptions that can occur
in MAS contexts:

♦ Commitment Violations: This category consists of problems where some entities
in the MAS do not properly discharge their commitments to each other, e.g. when
a subcontractor is overdue with a task, a message is delivered garbled or late, or a
host computer crashes. Even the best production code includes an average of 3
design faults per 1000 lines of code [2], and in open systems we can expect a
wide range of code quality as well as actively malicious agents.

♦ Emergent Dysfunctions: This category consist of dysfunctional behaviors that
emerge from the locally correct behavior of many agents. There are many
examples of such dysfunctions, ranging from social dilemmas such as the

www.manaraa.com

86 M. Klein

♦ ‘tragedy of the commons’ [3], to wild variations in resource utilization [4] [5],
and timing artifacts such as ‘resource poaching’ (wherein earlier low priority
tasks freeze out later high-priority tasks from access to critical resources) [6].
Such exceptions are especially problematic because they do not represent errors
per se, but rather the unexpected consequences of simple coordination
mechanisms applied in complex environments.

The challenge of identifying exceptions and their resolutions is complicated by the
fact that expertise on this subject is scattered across multiple disciplines that include
computer science, industrial engineering, economics, management science, biology,
and the complex system sciences. MAS designers are thus unlikely to be cognizant of
all the expertise potentially relevant to their tasks.

This paper describes a methodology that multi-agent system (MAS) designers can
use to identify, and find suitable responses for, these potential failures (henceforth
called ‘exceptions’). We present the core exception analysis methodology in section
2, and then describe (in section 3) how an augmentation of the MIT Process
Handbook captures exception handling expertise in a way that can greatly increase the
speed and comprehensiveness of exception analysis.

2 Exception Analysis

Our exception analysis methodology is based on the insight that coordination
fundamentally involves the making of commitments [7] [8] [9], and that exceptions
(i.e. coordination failures) can as a result be viewed as violations of the commitments
agents require of one another. Exception analysis thus consists of the following steps:

♦ Identify the commitments agents require of one another
♦ Identify the processes by which these commitments are achieved
♦ Identify the ways these processes can violate these commitments (i.e. the

exceptions)
♦ Identify the ways these exception can be handled (i.e. the exception handlers)

We consider these steps in the paragraphs below. To make the discussion more
concrete, we will describe them in context of the “Contract Net” (CNET), a well-
known auction-based task-sharing mechanism known as the [10].

In this protocol, an agent (the “contractor”) identifies a task that it cannot or
chooses not to do locally and attempts to find another agent (the “subcontractor”) to
perform the task. It begins by creating a Request For Bids (RFB) which describes the
desired work, and then sending it to potential subcontractors (typically identified
using an agent known as a ‘matchmaker’). Interested subcontractors respond with
bids (specifying such issues as the price and time needed to perform the task) from
which the contractor selects a winner. This is thus a first-price sealed-bid auction. The
winning agent, once notified of the award, performs the work (potentially
subcontracting out its own subtasks as needed) and submits the results to the
contractor.

www.manaraa.com

A Knowledge-Based Methodology for Designing Reliable Multi-agent Systems 87

Contractor Role Subcontractor Role

Create RFB
(Request For

Bids)

Create Bid

Select Bid

Perform Work

Receive Results

Send RFB

Send Bid

Award Contract

Send Results

Fig. 1. The Contract Net Coordination Mechanism

We can see that there are thus at least three key agent types in CNET: the contractor,
subcontractor, and matchmaker.

2.1 Identifying Commitments and Processes

The commitments involved in a coordination mechanism represent all the places
where one agent depends on some other agent to achieve its goals [7]. They can be
identified in a straightforward way by linking commitments to the agent processes
that achieve them, and linking these processes to the commitments they in turn
require to execute successfully. The first commitment in CNET, for example, is the
contractors’ requirement that it have a list of agents potentially suitable for
performing the task T it wishes to subcontract out:

C1: matchmaker receives list of subcontractor agents suitable for task T

In CNET, this requirement is discharged by the matchmaking process enacted by the
matchmaker agent:

P1: matchmaker finds matches for skill set S

www.manaraa.com

88 M. Klein

In order for process P1 to discharge commitment C1, it in turn requires such other
commitments as:

C2: matchmaker receives subcontractor agent skill notifications
C3: matchmaker receives correct skill set S in timely way
C4: matchmaker receives sufficient computational resources to run effectively
C5: matchmaker code was programmed correctly
C6: matchmaker results message is sent quickly and correctly to requesting

contractor agent

Commitment C4, in turn, is achieved by a host computer:

P2: host computer provides computational resources for hosted agents

If we follow this process in sufficient depth we can, in principle, exhaustively
identify the commitments (and associated processes) involved in a given coordination
mechanism.

The explicit identification of all commitments is critical because often exceptions
occur because no mechanism was put in place to ensure the satisfaction of some
important but overlooked implicit commitment. Also note that commitments should
be enumerated from the idealized perspective of each agent. For example, in an
auction the seller ideally wants the following commitment:

C6: seller receives bids representing true bidder valuation for good

even though in many situations the bidder may have no intention of fulfilling this
commitment (e.g. in auctions where true-value revelation is not the dominant
strategy). Many important exceptions represent violations of such ideal-case
commitments.

2.2 Identifying Commitment Violations

The next step is to identify, for each commitment, how that commitment can be
violated by the process selected to achieve it, i.e. what the possible exceptions are. An
initial set of exceptions can be identified simply as the logical negations of the
commitment itself. For example, the commitment to send a message consists of three
components: delivering the right message to the right place at the right time. Any
process selected to achieve these commitments thus has three possible failure modes:

E1: sender delivers the wrong message (e.g. the message is garbled)
E2: sender delivers message to the wrong place
E3: sender delivers message at the wrong time (e.g. the message arrives late or

never)

Not all exception types, however, can be identified so simply. Process P2 above, for
example, can violate its commitments due to exceptions that include:

www.manaraa.com

A Knowledge-Based Methodology for Designing Reliable Multi-agent Systems 89

E4: host computer experiences a denial of service attack
E5: host computer is infected by a virus

The range of possible exception types seems to be limited only by human
imagination. This introduces a experiential component into exception analysis; one
must rely on one’s previous experience to identify possible exception types, and an
exhaustive identification may not be possible

2.3 Identifying Exception Handlers

Once we have identified the exceptions that potentially characterize a given MAS
process, we are ready to identify possible processes for handling these exceptions.
Exception E1, for example, can be detected by the process:

P3: sender performs error-detecting checksum on message contents

and it can be resolved by:

P4: sender re-sends message

As with exceptions themselves, the range of possible exception handling processes
appears to be limited only by human creativity. Also note that exception handling
processes, just like any other MAS process, can of course require their own
commitments and face their own exceptions.

This exception analysis procedure is systematic but potentially very time-
consuming, and it still requires that MAS designers have a substantial amount of
expertise about possible exceptions and how they can be handled, so the possibility of
missing important exceptions or valuable exception handling techniques remains.

3 Exploiting a Knowledge Base

This challenge has led us to explore whether it is possible to systematically
accumulate exception-related expertise so that designers can benefit from ideas drawn
from other designers, and from multiple disciplines, in order to perform exception
analysis more quickly and completely. Our approach has been to build upon the MIT
Process Handbook, a process knowledge repository which has been under
development at the Center for Coordination Science (CCS) for about 10 years [11].
The key concept underlying the Handbook is that processes can be arranged into a
taxonomy, with very generic processes at one extreme and increasingly specialized
processes towards the other. Such taxonomies have two useful properties. One is that
attributes of generic entities tend to be inherited by their ‘specializations’, so one can
capture useful generalizations that apply to a wide range of processes. The other is
that similar entities (e.g. processes with similar purposes) tend to appear close to one
another.

www.manaraa.com

90 M. Klein

We extended this schema to allow it to capture the results of applying the
exception analysis methodology described above. This was accomplished (see [12]
[13]) by defining:

1. a taxonomy of commitment types, where commitments can be linked to the
processes that require them as well as the processes that achieve them, and

2. a taxonomy of exception types, where exceptions can be linked to the processes
they impact as well as the processes appropriate for handling them.

Using this extended schema, we have developed a knowledge base that consists of
the results of applying our exception analysis methodology to a range of more or less
abstract MAS coordination processes and their component sub-processes. We have
also implemented a web-based interface for accessing and editing the contents of this
knowledge base. The examples presented in this paper are all drawn from this
knowledge base.

A MAS designer can use a knowledge base structured in this way to facilitate
exception analysis as follows:

1. Consult the knowledge base to find the generic processes that subsume, or closely
match, the processes used in the MAS of interest.

2. Identify which of the exceptions listed for those generic processes in the
knowledge base appear to be important for this particular MAS.

3. For each of these exceptions, identify which of the exception handler(s) described
in the knowledge base seem best suited for this MAS. These exception handlers
should, of course, be submitted to the same exception analysis procedures as the
other MAS processes.

The power of this approach comes from the fact that a relatively small corpus of
abstract commitments, exceptions and process models is, when represented in this
way, capable of capturing a surprisingly high proportion of the exception handling
expertise we need. We describe how this works in more detail below.

3.1 Finding the Matching Generic Processes

The taxonomic organization of processes in the Handbook knowledge base makes it
straightforward to find matching generic process(es). The procedure is similar to
finding a book in a library. One simply traverses down the subject taxonomy from the
top, selecting the most appropriate sub-categories at each step, until the desired
section is reached.

We have developed a taxonomy of the most widely-used MAS coordination
processes, ranging from market mechanisms to distributed planning to game-theoretic
and stigmergic approaches (available on-line at http://franc2.mit.edu/pql/ with login =
guest and password = guest). We have focused our initial efforts on auctions because
their wide applicability, scalability, simplicity and well-understood properties make
them widely used by MAS designers (see [14] for a description of the taxonomy).
Every auction mechanism captured in the Handbook includes a textual description as
well as an enumeration of its subtasks, required commitments, and the commitments
it achieves.

www.manaraa.com

A Knowledge-Based Methodology for Designing Reliable Multi-agent Systems 91

Using this information, one can readily determine which processes in the taxonomy
match the process of interest. Imagine for example that a MAS designer has
developed a task allocation scheme wherein subcontractor agents send in sealed bids
in order to compete for subtasks. To find a matching generic process, he or she would
start at the ‘resource sharing process’ branch of the taxonomy, and traverse down
from there, quickly reaching the fragment of the process taxonomy devoted to auction
mechanisms:

Fig. 2. A portion of the auction mechanism taxonomy

Using this portion of the taxonomy, the designer can quickly determine that his or her
task allocation scheme is an instance of the generic Contract Net process described in
the knowledge base. In addition to enabling the quick identification of relevant
exception types (see below), finding the matching generic processes can increase the
completeness of the MAS model: one can look at the components and requirements in
the generic process and check whether any are missing in the current MAS model.

3.2 Finding Applicable Exceptions

Once the matching generic processes have been identified, we can then identify the
exceptions that the MAS is potentially prone to. This is straightforward because each
process in the knowledge base is linked directly to its characteristic exceptions. All
auctions, for example, are a specialization of the abstract ‘pull-based sharing’ process,
which represents mechanisms wherein resources, e.g. subcontractor agents, are
allocated based on consumer requests rather centralized budgeting. If we consult the
Handbook knowledge base we find that pull-based sharing is prone to such ‘emergent

www.manaraa.com

92 M. Klein

dysfunction’ exceptions as “resource poaching” and “synchronized jump thrashing”
(Figure 3):

Fig. 3. An example of exceptions for a generic process

The fact that auction mechanisms are prone to such emergent dysfunctions is a
potentially powerful and easily missed insight. Auction mechanisms are typically
designed by economists interested in equilibrium behavior, and implemented by
computer scientists, while the dynamics of resource sharing are studied by researchers
in the complex systems field, which grew mainly out of physics. This is an example,
therefore, of how a taxonomic approach, based as it is on the identification of
powerful generalizations, can foster the cross-disciplinary transfer of insights about
exception handling challenges and solutions.

3.3 Finding Applicable Handlers

Once one has determined which exceptions are important for a particular MAS, the
next step is to identify the appropriate exception handlers. This is straightforward
because exceptions in the Handbook knowledge base are linked directly to the
exception handling processes appropriate for them. Our current knowledge base, for
example, notes that the exception “Synchronized Jump Thrashing” (where resource
consumers generate oscillatory or even chaotic resource utilization behavior due to
delayed resource quality information) can be detected using signal processing
techniques and resolved by carefully timed modification of resource availability
messages [4].

There are four classes of exception handlers in the knowledge base, divided into
two pairs. If a exception has not yet occurred, we can use:

♦ Exception anticipation processes, which uncover situations where a given class
of exception is likely to occur. Resource poaching, for example, can be

www.manaraa.com

A Knowledge-Based Methodology for Designing Reliable Multi-agent Systems 93

anticipated when there is a flood of long duration tasks requiring scarce, non-
preempting subcontractors to perform them.

♦ Exception avoidance processes, which reduce or eliminate the likelihood of a
given class of exception. Resource poaching can be avoided, for example, by
allowing subcontractors to preempt their current tasks in favor of higher priority
pending tasks.

If the exception has already occurred, we can use:

♦ Exception detection processes, which detect when an exception has actually
occurred. Some exceptions, such as bidder collusion for example, are difficult to
anticipate but can be detected post-hoc by looking at bid price patterns.

♦ Exception resolution processes, which resolve an exception once it has happened.
One resolution for bidder collusion, for example, is to penalize and/or kick out
the colluding bidders and re-start the auction for the good in question.

The exceptions in our knowledge base are arranged, like processes, into a
taxonomic structure (Figure 4):

Fig. 4. A fragment of the exception taxonomy

Exceptions are grouped into classes that share similar underlying causes and thus
similar exception handling techniques. This implies that when a new exception
handling process is entered into the knowledge base, it can be placed in a way that
makes explicit the full range of exceptions to which it is applicable.

Where multiple alternative handler processes exist for addressing a particular
exception, the Handbook knowledge base allows one to describe the pros and cons of
the handlers using tradeoff tables. The taxonomic structure of the knowledge base

www.manaraa.com

94 M. Klein

also facilitates the design of innovative handler processes through re-combining
elements of existing handlers [15].

Whatever handlers we select can themselves be made subject to the exception
analysis approach described above in order to further increase the robustness of the
MAS. Reputation mechanisms, for example, have been put forth as handlers for many
classes of agent commitment violation exceptions. Our knowledge base captures the
fact that such mechanisms can be sabotaged by such exceptions as dishonest ratings.

4 Contributions

Limited space has only allowed us to sketch out the knowledge-based exception
analysis approach we have been developing. We hope, however, that the key benefits
have been made clear. Existing exception analysis techniques leave the identification
of possible exceptions and handlers up to the MAS designers themselves. The
knowledge-based exception analysis procedure we describe, by contrast, makes it
possible to systematically enumerate all the points where exceptions can occur,
quickly identify what exceptions may appear at those points, and suggest how they
may be handled. Because this knowledge base represents the accumulation of
expertise drawn from many different designers and disciplines, it has the potential of
identifying exception types and handler techniques that may otherwise be overlooked
by the MAS designer.

We have applied our tools and knowledge base to exception analysis in a range of
domains including futures trading, multi-agent system task allocation, and concurrent
engineering. Our preliminary assessment is that the methodology can be effective in
helping designers design more reliable multi-agent systems.

5 Future Work

We are continuing to accumulate a knowledge base of exception types and handlers,
currently focusing on market-based sharing, collaborative synthesis, and emergent
dynamical dysfunctions. We are also developing software agents that use this
knowledge base to do real-time exception detection and intervention in multi-agent
systems. For additional information about this and related work, see
http://ccs.mit.edu/klein/.

Acknowledgements. This work was supported by the DARPA CoABS program as
well as the NSF Computational and Social Systems program. The author gratefully
acknowledges the important contributions made by Chrysanthos Dellarocas, George
Herman, Thomas Malone, Simon Parsons, John Quimby, Juan-Antonio Rodriguez-
Aguilar, and others.

www.manaraa.com

A Knowledge-Based Methodology for Designing Reliable Multi-agent Systems 95

References

[1] Hunt, J., D.R. Pugh, and C.J. Price (1995). Failure mode effects analysis: a practical
application of functional modeling. Applied Artificial Intelligence. 9(1): p. 33–44.

[2] Gray, J. and A. Reuter (1993). Transaction Processing : Concepts and Techniques.
Morgan Kaufmann series in data management systems. San Mateo, Calif. USA: Morgan
Kaufmann Publishers. xxxii, 1070.

[3] Hardin, G. (1968). The Tragedy of the Commons. Science. 162: p. 1243–1248.
[4] Huberman, B.A. and D. Helbing (1999). Economics-based optimization of unstable flows.

Europhysics Letters. 47(2): p. 196–202.
[5] Sterman, J.D. (1994). Learning in and about complex systems. Cambridge, Mass.: Alfred

P. Sloan School of Management, Massachusetts Institute of Technology. 51.
[6] Chia, M.H., D.E. Neiman, and V.R. Lesser (1998). Poaching and distraction in

asynchronous agent activities. In the proceedings of Proceedings of the Third International
Conference on Multi-Agent Systems. Paris, France. p. 88–95.

[7] Singh, M.P. (1999). An Ontology for Commitments in Multiagent Systems: Toward a
Unification of Normative Concepts. Artificial Intelligence and Law. 7: p. 97–113.

[8] Jennings, N.R. (1996). Coordination Techniques for Distributed Artificial Intelligence, in
Foundations of Distributed Artificial Intelligence, G.M.P. O'Hare and N.R. Jennings,
Editors. John Wiley & Sons. p. 187–210.

[9] Gasser, L. (1992). DAI Approaches to Coordination, in Distributed Artificial Intelligence:
Theory and Praxis, N.M. Avouris and L. Gasser, Editors. Kluwer Academic Publishers. p.
31–51.

[10] Smith, R.G. and R. Davis (1978). Distributed Problem Solving: The Contract Net
Approach. Proceedings of the 2nd National Conference of the Canadian Society for
Computational Studies of Intelligence.

[11] Malone, T.W., et al. (1999). Tools for inventing organizations: Toward a handbook of
organizational processes. Management Science. 45(3): p. 425–443.

[12] Klein, M. and C. Dellarocas (2000). A Knowledge-Based Approach to Handling
Exceptions in Workflow Systems. Journal of Computer-Supported Collaborative Work.
Special Issue on Adaptive Workflow Systems. 9(3/4).

[13] Klein, M. (2000). Towards a Systematic Repository of Knowledge About Managing
Collaborative Design Conflicts. In the proceedings of Proceedings of the International
Conference on AI in Design (AID-2000). Boston MA. Kluwer Academic Publishers.

[14] Parsons, S., J.A. Rodriguez-Aguilar, and M. Klein, A Bluffer's Guide to Auctions. 2003,
MIT Sloan School of Management: Cambridge MA USA.

[15] Bernstein, A., M. Klein, and T.W. Malone (1999). The Process Recombinator: A Tool for
Generating New Business Process Ideas. In the proceedings of Proceedings of the
International Conference on Information Systems (ICIS-99). Charlotte, North Carolina
USA. p. 178–191.

www.manaraa.com

A Framework for Constructing Multi-agent
Applications and Training Intelligent Agents

Pericles A. Mitkas, Dionisis Kehagias,
Andreas L. Symeonidis, and Ioannis N. Athanasiadis

Department of Electrical and Computer Engineering,
Aristotle University of Thessaloniki,

GR541 24 Thessaloniki, Greece,
Tel.: +30-2310-996349,
Fax: +30-2310-996398
mitkas@eng.auth.gr,

{diok,asymeon,ionathan}@ee.auth.gr

Abstract. As agent-oriented paradigm is reaching a significant level of
acceptance by software developers, there is a lack of integrated high-
level abstraction tools for the design and development of agent-based
applications. In an effort to mitigate this deficiency, we introduce Agent
Academy, an integrated development framework, implemented itself as
a multi-agent system, that supports, in a single tool, the design of agent
behaviours and reusable agent types, the definition of ontologies, and the
instantiation of single agents or multi-agent communities. In addition to
these characteristics, our framework goes deeper into agents, by imple-
menting a mechanism for embedding rule-based reasoning into them. We
call this procedure “agent training” and it is realized by the application
of AI techniques for knowledge discovery on application-specific data,
which may be available to the agent developer. In this respect, Agent
Academy provides an easy-to-use facility that encourages the substitu-
tion of existing, traditionally developed applications by new ones, which
follow the agent-orientation paradigm.

1 Introduction

In the last years, agent technology has impressively emerged as a new paradigm
for software development [1], which is expected to gain even wider acceptance
among the software developers. One important contribution to this effort could
be the provision of such tools and development environments that will enable the
deployment of agent-based applications quickly and easily. As opposed to this
envisioned situation, the current landscape of agent constructing tools is charac-
terized by a plethora of agent development environments, which provide limited
capabilities in terms of the level of abstraction in the design and development
process of agent-oriented applications. On the other hand, the scope of agent
tools and technologies, which dominate the mainstream of development trends
in this field, is now becoming clearer than in the past years. In this respect, a

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 96–109, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

www.manaraa.com

A Framework for Constructing Multi-agent Applications 97

quite desirable effort for agent developers is the creation of a software product
that combines all widely used mainstream technologies in one tool. In order to
fulfill this demand, we have developed Agent Academy (AA) [2], an integrated
framework for constructing multi-agent applications and embedding rule-based
reasoning into agents, at the design phase.

The framework presented in this paper is implemented upon the JADE [3]
infrastructure, ensuring a relatively high degree of FIPA compatibility, as defined
in [4,5]. AA is itself a multi-agent system, whose architecture is based on the
GAIA methodology [6]. It provides an integrated GUI-based environment that
enables the design of single agents or multi-agent communities, using common
drag-and-drop operations. This capability of the AA development environment
helps agent application developers to build a whole community of agents with
chosen behaviour types and attributes in a few minutes. Using AA, an agent
developer can easily go into the details of the designated behaviours of agents and
precisely regulate communication properties of agents. These include the type
and number of the agent communication language (ACL) messages exchanged
between agents, the performatives and structure of messages, with respect to
FIPA specifications [7,8,9], as well as the semantics, which can be defined by
constructing ontologies with Protégé–2000 [10].

All of the aforementioned characteristics of our development environment
have been viewed from an agent–oriented software engineering perspective, since
they provide essential elements for the design and the construction of a multi-
agent system with pre-specified attributes. In addition to that, there is the AI
perspective that deals with the reasoning capabilities of agents. In this context,
our system implements a “training module” that embeds essential rule-based
reasoning into agents. This kind of reasoning is based on the application of data
mining (DM) techniques on possible available datasets. This methodology de-
veloped within AA, results in the extraction of agent knowledge in the form of
a decision model (e.g. a decision tree). The extracted knowledge is expressed
in Predictive Modeling Markup Language (PMML) [11] documents and stored
in a data repository, handled by our development framework. The applied data
mining techniques are, by definition, updateable as new data come into the repos-
itory. Thus, it is easy to update the knowledge bases of agents, by performing
agent “retraining”. This capability can be especially exploited in environments
with large amounts of periodically produced data. A characteristic example of
such an environment is encountered in almost all enterprise IT infrastructures,
the vast majority of which are implemented following traditional development
paradigms. To this end, our presented infrastructure is envisioned as a conve-
nient tool that will encourage the development of new agent-based applications
over the existing traditional ones, by exploiting available data.

The paper is structured as follows. Section 2 briefly reviews related work.
Section 3 describes the architecture of our framework and illustrates the devel-
opment process and the use of tools provided for the construction of a multi-agent
system. In section 4, a detailed presentation of the agent “training” mechanism
is given. Finally, section 5 concludes the paper and outlines future work.

www.manaraa.com

98 P.A. Mitkas et al.

2 Existing Tools and Applications

The growth in interest and use for agent technology motivated the development
of different frameworks and environment to support the implementation of multi-
agent systems. Most of them are Java-based applications that aim at facilitating
rapid implementation of agent-based applications, by providing mechanisms to
manage and monitor message exchanges between agents, and interface support
for creating and debugging multi-agent systems.

An advanced open-source tool-kit providing a library of software components
and tools that enable the rapid design, development and deployment of agent
systems is ZEUS [12]. Although this system is FIPA compliant, it does not
support agent mobility, as opposed to AA. Another development environment
[13] is implemented as a multi-agent system, in a similar manner as AA, but it
does not satisfy the requirements for FIPA compliance.

As far as compliance to FIPA standards is concerned, there is a development
framework [14] that meets the FIPA specifications about Agent Management
and Agent Communication Language, among others, as well as AA does. An-
other tool [15] for creating agent systems uses FIPA-ACL for agent messages,
but implements its own naming register service, ignoring the relative FIPA spec-
ifications.

All of the aforementioned development frameworks do not facilitate the use
of any particular reasoning tools, but they do not prevent the agent developers
from using other existing tools or implementing their own agent reasoning. In
contrast, AA provides both a high-level, GUI-based environment for the design
and development of agent-based applications and a training facility that creates
rule-based reasoning into the developed agents. A survey of existing tools for
creating rule-based reasoning for agents is given in [16].

3 The Development Framework

Our development framework acts as an integrated GUI-based environment that
facilitates the design process of a MAS. It also supports the extraction of decision
models from data and the insertion of these models into newly created agents.
Developing an agent application using AA involves the following activities from
the developer’s side:

a. the creation of new agents with limited initial reasoning capabilities;
b. the addition of these agents into a new MAS;
c. the determination of existing, or the creation of new behaviour types for

each agent;
d. the importation of ontology-files from Protégé–2000;
e. the determination of message recipients for each agent.

In case that an agent application developer intends to create a reasoning
engine for one or more agents of the designed MAS, two more operations are
required for each of those agents:

www.manaraa.com

A Framework for Constructing Multi-agent Applications 99

instantiated MAS

Agent Academy

database

DMM

ATM

Agent Factory (main GUI)

XML
Application Data

Protege-2000

Agent Types Definition

Behaviour Types Definition

MAS Creation Tool

Ontology definition

Extraction of
the decision

model

Insertion of the
decision model

into agents

Instantiation
of a new

MAS
Agent with
reasoning

Dummy
agents

Data
storage

Design of agent
application

Fig. 1. Diagram of the Agent Academy development framework

– the determination of an available data source of agent decision attributes;
– the activation of the training procedure, by specifying the parameters of the

training mechanism.

Figure 1 illustrates the Agent Academy main functional diagram, which rep-
resents the main components and the interactions between them. In the remain-
ing section, we discuss the Agent Academy architecture, and we explain how the
development process is realized through our framework.

3.1 Architecture

The main architecture of AA is also shown in Fig. 1. An application developer
launches the AA platform in order to design a multi-agent application. The main
GUI of the development environment is provided by the Agent Factory (AF), a
specifically designed agent, whose role is to collect all required information from
the agent application developer regarding the definition of the types of agents
involved in the MAS, the types of behaviours of these agents, as well as the
ontology they share with each other. For this purpose, Agent Academy provides

www.manaraa.com

100 P.A. Mitkas et al.

a Protégé–2000 front-end. The initially created agents possess no referencing
capabilities (“dummy” agents). The developer may request from the system
to create rule-based reasoning for one or more agents of the new MAS. These
agents interoparate with the Agent-Training Module (ATM), which is responsible
for inserting a specific decision model into them. The latter is produced by
performing DM on data entered into Agent Academy as XML documents or as
datasets stored in a database. This task is performed by the Data Mining Module
(DMM), another agent of AA, whose task is to read available data and extract
decision models, expressed in PMML format.

AA hosts a database system for storing all information about the configura-
tion of the new created agents, their decision models, as well as data entered into
the system for DM purposes. The whole AA platform was created as a MAS,
which is executed upon JADE.

3.2 Developing Multi-agent Applications

The main GUI of the development platform (Agent Factory) consists of a set of
graphical tools, which enable the developer to carry out all required tasks for the
design and creation of a MAS, without any effort for writing even a single line
of source code. In particular, the Agent Factory comprises the Ontology Design
Tool, the Behaviour Type Design Tool, the Agent Type Definition Tool, and the
MAS Creation Tool.

3.3 Creating Agent Ontologies

A required process in the creation of a MAS, is the design of one or more on-
tologies, in order for the agents to interoperate adequately. The Agent Factory
provides an Ontology Design Tool, which helps developers adopt ontologies de-
fined with the Protégé–2000, a tool for designing ontologies. The RDF files that
are created with Protιgι are saved in the AA database for further use. Since
AA employs JADE for agent development, ontologies need to be converted into
special JADE ontology classes. For this purpose, our framework automatically
compiles the RDF files into JADE ontology classes.

3.4 Creating Behaviour Types

The Behaviour Type Design Tool assists the developer in defining generic be-
haviour templates. Agent behaviours are modeled as workflows of basic building
blocks, such as receiving/sending a message, executing an in-house application,
and, if necessary, deriving decisions using inference engines. The data and con-
trol dependencies between these blocks are also handled. The behaviours can
be modeled as cyclic or one-shot behaviours of the JADE platform. These be-
haviour types are generic templates that can be configured to behave in different
ways; the structure of the flow is the only process defined, while the configurable
parameters of the application inside the behaviour, as well as the contents of the

www.manaraa.com

A Framework for Constructing Multi-agent Applications 101

messages can be specified using the MAS Creation Tool. It should be denoted
that the behaviours are specialized according to the application domain.

The building blocks of the workflows, which are represented by nodes, can
be of four types:

1. Receive nodes, which enable the agent to filter incoming FIPA-SL0 messages.
2. Send nodes, which enable the agent to compose and send FIPA-SL0 messages.
3. Activity nodes, which enable the developer to add predefined functions to the

workflow of the behaviour, in order to permit the construction of multi-agent
systems for existing distributed systems.

4. Jess nodes, which enable the agent to execute a particular reasoning engine,
in order to deliberate about the way it will behave.

Figure 2 illustrates the design of the behaviour for an agent that receives
a message and, according to the content of the message, either executes a pre-
specified function, or sends a message to another agent.

Fig. 2. Creating the Behaviour of an agent through the Behaviour Design Tool

www.manaraa.com

102 P.A. Mitkas et al.

3.5 Creating Agent Types

After having defined certain behaviour types, the Agent Type Definition Tool is
provided to create new agent types, in order for them to be used later in the
MAS Creation Tool. An agent type is in fact an agent plus a set of behaviours
assigned to it. New agent types can be constructed from scratch or by modifying
existing ones. Agent types can be seen as templates for creating agent instances
during the design of a MAS.

During the MAS instantiation phase, which is realized by the use of the
MAS Creation Tool, several instances of already designed agent types will be
instantiated, with different values for their parameters. Each agent instance of
the same agent type can deliver data from different data sources, communicate
with different types of agents, and even execute different reasoning engines.

3.6 Deploying a Multi Agent System

The design of the behaviour and agent types is followed by the deployment of
the MAS. The MAS Creation Tool enables the instantiation of all defined agents
running in the system from the designed agent templates. The receivers and
senders of the ACL messages are set in the behaviours of each agent. After all
the parameters are defined, the agent instances can be initialized. Agent Factory
creates default AA Agents, which have the ability to communicate with AF and
ATM. Then, the AF sends to each agent the necessary ontologies, behaviours,
and decision structures.

4 Agent “Training”

The initial effort for the implementation of such a development framework as
the one presented in this paper, was motivated by the lack of an agent-oriented
software-engineering tool coupled with AI aspects, as far as we know. The ability
to incorporate background knowledge into an agent’s decision–making process is
arguably essential for effective performance in dynamic environments. However,
agent-oriented software engineering methodologies deal with, both high-level,
top-down iterative approaches and design methods for software systems [17].
Thus, the lack of tools that concern agent reasoning issues in most high-level
software design approaches is excused when we examine these approaches from a
pure software-engineering point of view. Moreover, building a MAS with a large
number of agents usually requires the reasoning to be distributed in many agents
of the MAS community, reducing the degree of reasoning per agent. From our
perspective, an agent-oriented development infrastructure should both provide
high-level design capabilities and deal with the internals of an agent architecture,
in order to be considered complete and generic.

For this reason, we have implemented, as a separate module of the overall
agent-oriented development environment a mechanism for embedding rule-based
reasoning capabilities into agents. This is realized through the ATM, which is

www.manaraa.com

A Framework for Constructing Multi-agent Applications 103

responsible for embedding specific knowledge into agents. This knowledge is
generated as the outcome of the application of DM techniques into available
data. The other module, whose role is to exploit possible available datasets
in order to extract decision models, is the DMM. Both ATM and DMM are
implemented as JADE agents who act in close collaboration.

These two basic modules, as well as the flow of the agent training process are
shown in Fig. 3. At first, let us consider an available source of data formatted in
XML. The DMM receives data from the XML document and executes certain
DM algorithms (suitable for generating a decision model), determined by the
agent-application developer. The output of the DM procedure is formatted as a
PMML document.

Agent

JADE Behaviour

Rule-based Behaviour

Initial Beliefs

Data Mining Module (DMM)

Agent Training Module (ATM)

decision model

JESS Rule

Engine

XML data

PMML
document

Fig. 3. Diagram of the agent training procedure

www.manaraa.com

104 P.A. Mitkas et al.

PMML is an XML-based language, which provides a rapid and efficient way
for companies to define predictive models and share models between compliant
vendors’ applications. It allows users to develop models within one vendor’s
application, and use other vendors’ applications to visualize, analyze, evaluate or
otherwise use the models. The fact that PMML is a data mining standard defined
by DMG (Data Mining Group) [11] provides the Agent Academy platform with
versatility and compatibility to other major data mining software vendors, such
as Oracle, SAS, SPSS and MineIt.

The PMML document represents a knowledge model that expresses the ref-
erencing mechanism of the agent we intend to train. The resulted decision model
is translated, through the ATM, to a set of facts executed by a rule engine. The
implementation of the rule engine is provided by JESS [18], a robust mechanism
for executing rule-based reasoning. Finally, the execution of the rule engine be-
comes part of agent’s behaviour.

As shown in Fig. 3, an agent that can be trained through the provided infras-
tructure encapsulates two types of behaviours. The first is the basic initial be-
haviour predefined by the AF module. This may include a set of class instances
that inherit the Behaviour class defined in JADE [5]. The initial behaviour is
created at the agent generation phase, using the Behaviour Design Tool, as de-
scribed in the previous section. This type of behaviour characterizes all agents
designed by Agent Academy, even if the developer intends to equip them with
rule-based reasoning capabilities. This essential type of behaviour includes the
set of initial agent beliefs.

The second supported type of behaviour is the rule-based behaviour, which
is optionally created, upon activation of the agent-training feature. This type
of behaviour is dynamic and implements the decision model. In the remaining
section, we present the details of the data mining procedure and we describe the
mechanism for embedding decision-making capabilities into the newly trained
agents.

4.1 Mining Background Data for Creating Decision Models

The mechanism for extracting knowledge from available data, in order to pro-
vide agents with reasoning, is based on the application of DM techniques on
background application-specific data [19]. From our experience with the applica-
tion of our framework to an industrial scenario about supply chain management
[20], we ascertained that the enterprise IT infrastructures generate and manipu-
late a large amount of data on a permanent basis, thus becoming suitable data
providers that satisfy the purposes of DMM.

In the initial phase of the DM procedure, the developer launches the GUI-
based wizard depicted in Fig.4(a) and specifies the data source to be loaded and
the agent decision attributes that will be represented as internal nodes of the
extracted decision model. In Fig.4(b) the developer selects the type of the DM
technique from a set of available options. In order to clarify the meaning of agent
decision attributes, let us consider the decision model in Fig.5. A certain decision
is made when some or all input attributes are satisfied. In Fig. 5 we see an input

www.manaraa.com

A Framework for Constructing Multi-agent Applications 105

Fig. 4. The two first steps of the DMM wizard

vector of M attributes and an output vector with N attributes, which comprises
the overall decision that an agent makes. One part of agent decision attributes
is identical to the set of inputs that an agent receives, while the remaining part
represents the outputs (decision nodes) of the agent.

Regarding the technical details of the DMM, we have developed the DM
facility in our framework, by incorporating a set of DM methods based on the
WEKA [21] library and tools and we further extended the WEKA API in or-
der for it to support PMML (a later version of the WEKA API will have our
extension included). Some other new DM techniques have also been developed
but we will not mention them here, as this would be out of this paper’s scope.
For further information on the developed DM algorithms, please see [22].

www.manaraa.com

106 P.A. Mitkas et al.

.

.

.

Input attribute 1
Input attribute 2

Input attribute M-1
Input attribute M

.

.

.

Output attribute 1
Output attribute 2

Output attribute N-1
Output attribute N

Decision model

Fig. 5. Input and output attributes in a decision model

In Fig.6(a), we present an XML document, while the respective PMML out-
put, which represents a cluster-based decision model, is shown in Fig.6(b). In
order to generate the PMML output, we used the K-means algorithm to perform
clustering on selected attributes described in the XML document. The dataset
illustrated in Fig.6(a) comes from the design of the formerly mentioned MAS [20]
about supply chain management. The XML document concerns customer-related
data. The PMML output shown in Fig.6(b), contains, apart from the extracted
decision model, some other algorithm-specific details, such as the number of
clusters produced, the attributes of the data set and the document version.

4.2 Embedding Intelligence into Agents

We saw in Fig.2 that the completion of the training process requires the trans-
lation of the DM resulted decision model into an agent-understandable format.
This is performed by the ATM, which receives the PMML output as an ACL
message sent by the DMM, as soon as the DM procedure is completed, and ac-
tivates the rule engine. Actually, the ATM converts the PMML document into
JESS rules and communicates, via appropriate messages, with the “trainee”
agent, in order to insert the new decision model into it. After the completion
of this process, our framework automatically generates Java source code and
instantiates the new “trained” agent into the predefined MAS. The total con-
figuration of the new agent is stored in the development framework, enabling
future modifications of the training parameters, or even the retraining of the
already “trained” agents.

5 Conclusions and Future Work

In this paper we have presented Agent Academy, a multi-agent development
framework for constructing multi-agent systems, or single agents. We argued
that the existing tools and infrastructures for agent development are especially
focused on the provision of high-level design methodologies, leaving out the de-
tails of agents’ decision-making abilities. In contrast, our framework can provide
both a GUI-based, high- level MAS authoring tool and a facility for extract-
ing rule-based reasoning from available data and inserting it into agents. The

www.manaraa.com

A Framework for Constructing Multi-agent Applications 107

<Instances title="ALTEC Data" author="Kehagias Dionisis">
 <Attributes>
 <Attribute>
 <Name>AVG_Order_Freq</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>AVG_Order_Rev</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>AVG_Payment_Trms</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>Crd_Limit</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>Logistics Dif</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>STD_Order_Freq</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>STD_Order_Rev</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>STD_Payment_Terms</Name>
 <Type>numeric</Type>
 </Attribute>
 <Attribute>
 <Name>Turnover</Name>
 <Type>numeric</Type>
 </Attribute>
 </Attributes>
 <Data>
 <Row>
 <Crd_Limit>-8.23599E-2</Crd_Limit>
 <Logistics_Dif>-6.69967E-2</Logistics_Dif>
 <Turnover>-0.138325</Turnover>
 <AVG_Order_Freq>-0.64769</AVG_Order_Freq>
 <STD_Order_Freq>-0.71325</STD_Order_Freq>
 <AVG_Order_Rev>-0.35288</AVG_Order_Rev>
 <STD_Order_Rev>-0.21821</STD_Order_Rev>
 <AVG_Payment_Trms>-1.32909</AVG_Payment_Trms>
 <STD_Payment_Terms>
0.50519</STD_Payment_Terms>
 </Row>
 </Data>
</Instances>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE pmml_2_0.dtd>
<PMML>
 <Header copyright="CERTH" description=" Clustering
Model of ERP data">
 <Application name="Agent Academy" version="0.3" />
 </Header>
 <DataDictionary numberOfFields="9">
…
 </DataDictionary>
 <ClusteringModel
modelName="ERP-org.agentacademy.modules.dataminer.f
ilters.ReplaceMissingValuesFilter"
modelClass="centerBased" numberOfClusters="5">
 <MiningSchema>

…
 </MiningSchema>
 <ClusteringField field="AB"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="CL"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="TO"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="AOP"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="STDAOP"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="AOI"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="STDAOI"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="APT"
compareFunc-tion="squaredEuclidean" />
 <ClusteringField field="STDAPT"
compareFunc-tion="squaredEuclidean" />
 <Cluster name="0">
 <Array n="9"> -1.825885 17.36695 18.23353 -0.55470
-0.47161 7.96735 14.47850 0.40154 0.92600</Array>
 </Cluster>
 <Cluster name="1">
 <Array n="9">
0.06525-0.27008-0.12450-0.64679-0.71163-0.35276-0.218
16-1.32502-0.49305</Array>
 </Cluster>
 <Cluster name="2">
 <Array n="9"> 0.03786 0.04243 0.04831 -0.08052
-0.17864 0.16450 0.09465 0.63661 0.00631 </Array>
 </Cluster>
…
 </ClusteringModel>
</PMML>

Fig. 6. XML input (a) and PMML output (b)

produced knowledge is expressed as PMML formatted documents. We have pre-
sented the functional architecture of our framework; we shortly demonstrated
an indicative scenario for deploying a MAS and, finally, we discussed the details
of the agent “training” process.

Through our experience with Agent Academy, we are convinced that this de-
velopment environment significantly reduces the programming effort for building

www.manaraa.com

108 P.A. Mitkas et al.

agent applications, both in terms of time and code efficiency, especially for those
MAS developers who use JADE. For instance, one MAS, that requires the writ-
ing of almost 6,000 lines of Java code, using JADE, requires less than one hour
to be developed with Agent Academy. This test indicates that AA meets the
requirement for making agent programs in a quicker and easier manner. On the
other hand, our experiments with the DMM have shown that the completion
of the decision model generated for agent reasoning is highly dependant on the
amount of available data. In particular, a dataset of more than 10,000 records is
adequate enough for producing high-confidence DM results, while datasets with
fewer than 3,000 records have yielded non-consistent arbitrary output.

The AA framework is the result of a development effort, which begun two
years ago. Currently, a beta version exists, which is not yet publicly available.
The first stable implementation of AA is planned to come out on July 2003, as
an open-source product. Our near future work involves the finalization of the
integration process for AA, as well as the exhaustive testing of the platform, by
implementing three large-scale applications in the domains of real-time notifica-
tion, web-based applications, and supply-chain management, respectively.

Acknowledgements. Work presented in this paper is partially funded by the
European Commission, under the IST initiative as a research and development
project (contract number IST-2000-31050, “Agent Academy: A Data Mining
Framework for Training Intelligent Agents”). Authors would like to thank all
members of the Agent Academy consortium for their remarkable efforts in the
development of such a large project.

References

1. Lind, J.: Issues in agent-oriented software engineering. In: First International
Workshop on Agent-Oriented Software Engineering (AOSE–2000), Limerick, Ire-
land (2000)

2. Agent Academy Consortium: Agent Academy. (2000) Available at:
http://agentacademy.iti.gr.

3. Bellifemine, F., Poggi, A., Rimassa, G., Turci, P.: An object-oriented framework
to realize agent systems. In: Proceedings of WOA 2000 Workshop, Parma, Italy
(2000) 52–57

4. Foundation for Intelligent Physical Agents: FIPA Developer’s Guide. (2001) Avail-
able at: http://www.fipa.org/specs/fipa00021/.

5. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: JADE Programmer’s Guide.
(2001) Available at: http://sharon.cselt.it/.

6. Wooldridge, M.J., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3 (2000) 285–312

7. Foundation for Intelligent Physical Agents: FIPA Communicative Act Library
Specification. (2001) Available at: http://www.fipa.org/specs/fipa00037/.

8. Foundation for Intelligent Physical Agents: FIPA SL Content Language Specifica-
tion. (2002) Available at: http://www.fipa.org/specs/fipa00008/.

www.manaraa.com

A Framework for Constructing Multi-agent Applications 109

9. Foundation for Intelligent Physical Agents: FIPA ACL Message Structure Specifi-
cation. (2002) Available at: http://www.fipa.org/specs/fipa000037/.

10. Noy, N.F., Sintek, M., S., D., Crubezy, M., Fergerson, R.W., Musen, M.A.: Creating
semantic web contents with Protégé–2000. IEEE Intelligent Systems 16 (2001)
60–71

11. Data Mining Group: Predictive Model Markup Language Specifications (PMML),
ver. 2.0. (2002) Available at: http://www.dmg.org.

12. Nwana, H., Ndumu, D., Lee, L., Collis, J.: ZEUS: A tool-kit for building distributed
multi-agent systems. Applied Artifical Intelligence Journal 13 (1999) 129–186

13. Gutknecht, O., Ferber, J.: Madkit: A generic multi-agent platform. In: 4th Inter-
national Conference on Autonomous Agents, Barcelona, Spain (2000)

14. Suguri, H., Kodama, E., Miyazaki, M., Nunokawa, H., Noguchi, S.: Madkit: A
generic multi-agent platform. In: Proceedings of the Workshop on Ontologies in
Agent Systems, 5th International Conference on Autonomous Agents, Montreal,
Canada (2001)

15. Jeon, H., Petrie, C., Cutkosky, M.: JATLite: a java agent infrastructure with
message routing. IEEE Internet Computing 4 (2000) 87–96

16. Rahimi, S., Cobb, M., Ali, D., Paprzycki, M.: An analysis of intelligence-enhancing
techniques for software agents. In: Proceedings of the 5th World Multi-Conference
on Systemics, Cybernetics and Informatics, Orlando (2001)

17. Tveit, A.: A survey of agent-oriented software engineering. In: Proceedings of the
NTNU Computer Science Graduate Student Conference, Norwegian University of
Science and Technology, Trondheim, Norway (2001)

18. Friedman-Hill, E.: Java Expert System Shell (JESS). Sandia National Laboratories.
(2002) Available at: http://herzberg.ca.sandia.gov/jess.

19. Symeonidis, A.L., Mitkas, P.A., Kehagias, D.: Mining patterns and rules for
improving agent intelligence through an integrated multi-agent platform. In:
6th IASTED International Conference, Artificial Intelligence and Soft Comput-
ing ASC, Banff, Alberta, Canada (2002)

20. Symeonidis, A.L., Kehagias, D., Koumpis, A., Vontas, A.: Open source sup-
ply chains. In: 10th International Conference on Concurrent Engineering (CE-
2003), Workshop on intelligent agents and data mining: research and applications,
Madeira, Portugal (2003)

21. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann Publishers, San Francisco,
CA (2000)

22. Athanasiadis, I.N., Kaburlasos, V.G., Mitkas, P.A., Petridis, V.: Applying machine
learning techniques on air quality data for real-time decision support. In: First
International NAISO Symposium on Information Technologies in Environmental
Engineering (ITEE’2003), Gdansk, Poland (2003)

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 110–122, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Activity Theory for the Analysis and Design
of Multi-agent Systems

Rubén Fuentes1, Jorge J. Gómez-Sanz1, and Juan Pavón1

Universidad Complutense Madrid, Dep. Sistemas Informáticos y Programación
28040 Madrid, Spain

{ruben,jjgomez,jpavon}@sip.ucm.es
http://grasia.fdi.ucm.es

Abstract. Modeling a Multi-Agent System (MAS) involves a large number of
entities and relationships. This implies the need for defining an organization, in
order to structure and manage the complexity of the whole system. In this work
we propose the use of human organization metaphors and their application to
the verification of MAS specification. In concrete, we apply Activity Theory,
which has its roots in Sociology, to study agent systems and obtain relationship
patterns that can be applied to the analysis of MAS. These patterns guide
analysis and design refinements, and help to detect inconsistencies. This
technique has been implemented and integrated in the INGENIAS IDE
platform, and proved with some case studies, in particular, for agent-based web
applications.

1 Introduction

The agent-oriented paradigm provides a new perspective for the development of
complex software systems. However, despite the advantages of using the agent
abstraction instead of traditional system/subsystem decomposition, building Multi-
Agent Systems (MAS) is not trivial at all. Describing a complex MAS will result in a
considerable number of interrelated diagrams (like in INGENIAS [15] or MAS-
CommonKADS [8]), or a few large diagrams (like in Tropos [2] or GAIA [18]).

As the number of diagrams and elements that participate in the specification of a
MAS grows, the probability that a contradiction appears increases also. Here
contradiction stands for an inconsistency, obscure point, or misunderstanding in the
models that describe the MAS. To identify these contradictions, a developer may
consider the use of formal methods. However, the application of formal methods
requires skills that are not frequent among developers. As a solution, this paper
proposes another abstraction that allows simple reasoning about a specification.

This approach starts with the assumption that agents have a strong social
component [12, 16] and that managing the complexity of a MAS requires structuring
the system as an organization [5]. Following this line, and considering that agents can
be used to simulate human organizations, we think that theories that explain human

1 This work has been developed in the project INGENIAS (TIC2002-04516-C03-03), which is

funded by Spanish Ministry of Science and Technology.

www.manaraa.com

Activity Theory for the Analysis and Design of Multi-agent Systems 111

organizations may also be applied to MAS. In this sense, we have studied Activity
Theory (AT) [11] as a technique for analysing MAS. The use of this social theory is
feasible on agent-oriented methodologies as they have an intentional and collective
component similar to what AT assumes on human organizations. AT identifies
regular patterns, some of which are contradictions, that appear in human
organizations, and with them it explains how social systems change or why
sometimes they do not behave as expected. This way, from the AT perspective,
contradictions guide system development, since they identify both problems and
solutions. The use of AT also reduces the communicative gap between developers and
customers. Analysis abstractions, even the agent one, are difficult to understand by
non-experts. On the contrary, AT social abstractions are closer to both customers and
developers as they represent common knowledge about human communities. For this
reason, AT concepts build a useful communicative language for the development
process.

AT, as it has been developed in Sociology, works with specifications in
unstructured natural language. To allow a more systematic use, we have adapted its
concepts to a well-known formalism in software engineering: UML [14]. This kind of
notation provides an intuitive and expressive tool for communication of AT concepts.
Using UML diagrams, we formalize AT contradictions as structural patterns.
Developers study these patterns looking for correspondences in their models, which
could be described in any language. If correspondences appear, they give a graphical
structural explanation of the contradiction in terms of model elements. This
explanation helps to understand the contradiction and find a solution. However, AT
contradiction patterns do not have to be expressed with the same specification
language as the one used, for instance, for the analysis specification. For this reason,
the application of the proposed approach requires first to define mappings from AT
concepts to those used in the agent modeling technique of choice.

The following section justifies the use of the contradictions as a driver for system
development. Then, section 3 explains why AT can be used to find contradictions in
MAS. Section 4 shows how contradictions can be represented by structural patterns,
and section 5 provides some examples of it with AT. In section 6, previous elements
are integrated in a validation method that checks the consistency of the different
elements and parts of a MAS specification against a set of patterns. This is illustrated
with an example in the following section. Finally, conclusions discuss the possibility
of applying AT for MAS checking and the value of analyzing contradictions taking
into account the results of the experimentation.

2 Contradictions as a Motor of Change

Contradictions are inherent to the software development process. They appear no
matter how disciplined a developer is. Contradictions arise in several ways that
require different treatments. According to their origin, contradictions can be classified
as:
• External. There are contradictions which have their origin in the environment.

Different systems running in the same environment may influence negatively
among themselves.

www.manaraa.com

112 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

• Internal. This situation may occur in a MAS when there are conflicting system
goals or different agents in the system pursue incompatible goals.

• Analysis mistakes. A software system is the result of a collaboration among
customers and developers. These groups of people usually have different
backgrounds and this causes misunderstandings in their communication. Besides,
real complex systems are described, at least in conventional software engineering,
from several viewpoints. It is difficult to maintain all of them updated and
consistent.

Contradictions are not just problems to solve. According to Activity Theory [11],
they can be the principle for guiding a development, the form in which the
development progresses. This means that new versions of the system specification
emerge as solutions to the contradictions of a previous one.

3 Activity Theory Applied to Intentional Systems

As systems that work in the knowledge level, MAS are intentional and social [12, 16].
By intentional, we mean that the system follows the Rationality Principle [13]: Every
action taken by an agent aims at achieving one of its goals. According to sociology,
these features also appear in human organizations. As a consequence of this common
base of both human organizations and MAS, social theories can be examined as a
source of information to help finding contradictions in MAS. One of them is Activity
Theory [11].

Activity Theory (AT) is a framework for the study of different forms of human
practices, as developmental processes with both the individual and social levels
interleaved. From an AT point of view, people are embedded in a socio-cultural
context and their behaviour cannot be understood independently of it. But people do
not have just a passive relationship with the surrounding context; they actively
interact with it, changing the objects and creating new artefacts. This complex
interaction of individuals with their surroundings has been called activity and is
considered as the fundamental unit of analysis.

To better understand the concepts behind AT that apply to MAS, we have
represented the core of AT using UML (see Fig. 1). The graphical notation employed
with Activity Theory uses a simple colour code to distinguish the different stereotypes
that a component of a specification can use.

The activity [4] is the central analysis concept and it reflects a process. The subject
is the active element that carries out the activity. It can represent an individual or a
group of individuals. The subject has some definite needs represented by the
objective. The objective is satisfied by the outcome, which is produced transforming
an object. The object may be an ideal or material one. So, the activity is a process
executed by the subject, to transform an object in the required outcome that satisfies
subject’s objective. In order to carry out that transformation, the subject employs
tools: tools always mediate subject’s processes over objects [17]. A tool can be
anything used in the process, including both material tools (e.g., a computer) and tools
for thinking (e.g., a plan). The tool is at the same time enabling and limiting in the
activity: it empowers the subject in the transformation process with the historically
collected experience and skills crystallised to it; but it also restricts the interaction to

www.manaraa.com

Activity Theory for the Analysis and Design of Multi-agent Systems 113

Fig. 1. Activity theory concepts and mediated relationships

be from the perspective of that particular tool, that is, the instrument hides other
potential features of an object to the subject.

The social level is characterised by the three lower concepts in the diagram (Fig. 1).
The community represents those subjects who share the same object [10]. Rules
mediate between subject and community, and the division of labour between object
and community. An activity may concern many subjects and each subject may play
one or more roles and have multiple motives. Rules specify how subjects fit into
communities. Rules cover both explicit and implicit norms, conventions, and social
relations within a community. Division of labour refers to the explicit and implicit
organisation of the community as related to the transformation process of the object
into the outcome.

As a generalization, an artefact states for whatever kind of concept in AT.
Using the previous notation with some additional concepts, we express what kinds

of contradictions and solutions AT identifies. The additional elements represent
contribution relationships and are related with i* [19]. Contributions show how
different artefacts have influence over others. Examples of this kind of relationships
are satisfaction of objectives, construction of objects, or damage of tools. Added
relationships that represent them are: contribute (positively, negatively or undefined),
essential and, impede.

4 Contradictions as Patterns

When a developer checks a software model, he intends to detect contradictions, give
them an explanation, and, possibly, investigate how the checked model should be
changed. To facilitate this work it is important to choose the appropriate language.

www.manaraa.com

114 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

Many modeling techniques are supported by visual languages. These visual
languages can be regarded as semi-formal since they are not completely un-
ambiguous. They often offer an accurate tradeoff between their communicative and
expressive power, which makes them attractive for development. Their
representations are intuitive enough to provide the tools for communication inside the
development team and with customers. At the same time, they have a precise enough
semantics to support basic validation. Of course, further validation capabilities are
desirable provided that usability is not compromised.

In order to gain these additional capabilities and keep usability, we propose the
description of contradictions as patterns using visual languages. The meaning of a
contradiction pattern comes from an interpretation of the primitives of the visual
language. To be able to use these patterns in a model, belonging to an analysis or a
design, and find contradictions, we need a mapping between vocabularies in the
model and the elements in the contradiction pattern. With contradiction patterns,
mappings, and a model to validate, detection of inconsistencies consists on finding the
part of the model that matches the structure of the contradiction pattern.

There are three main advantages of managing contradictions as patterns:
1. Patterns identify the elements and structures to find in the model in order to detect

contradictions. The combined use of patterns and mappings simplifies the detection
process to a correspondence one.

2. The same approach provides hints to the solution for contradictions. Pattern
definition comes together with one or several solution patterns. These solutions are
inspired by the experience of the same social theories that provide contradictions.
These theories have studied such problems for a long time. Working in the same
way with contradictions and their solutions gives a uniform path through the whole
validation process, from detection, to explanation and solving.

3. A graphical notation describes inconsistencies. This kind of notations helps in the
communication between customers and developers. There are many successful
examples of its use, for instance, UML [14], Petri Nets [3], or Tropos [2].
Contradiction patterns, as a validation tool, are not intended to show how a MAS

should be build, like design patterns in [6], but to point out conflictive configurations
in the analysis.

5 AT Patterns

Using the concepts and notation presented in the previous section, AT contradictions
are described as graphical patterns. AT research [4,10,11,17] describes several
conflictive situations in human activities. Two of the most referenced contradictions
are Double bind and Twofold meaning.

Double bind (see Fig. 2) represents a situation in which no matter what the subject
does, every action has some negative effect on at least one of its objectives. The
subject is able to carry out several activities but each one has some related goal that is
negatively affected by that action.

www.manaraa.com

Activity Theory for the Analysis and Design of Multi-agent Systems 115

Fig. 2. Double bind contradiction

One possible solution to a Double bind situation is to decompose activities with
additional ones to minimize those negative contributions to objectives. An activity can
be decomposed in different sequences of activities. Although some of the activities in
the sequence will probably preserve the negative effect over objectives, it is possible
to introduce others with a positive effect. The model could be changed to include this
information, as it is shown in Fig. 3.

Fig. 3. One possible solution to Double bind contradiction

A twofold meaning situation (see Fig. 4) emerges when an artefact has several
different uses inside an activity. If these uses are not consistent, an inner contradiction
arises. This contradiction does not imply always an analysis mistake. It can draw
attention to the need of discussing some aspects of the system with customers, or
detail possible expansion points in the analysis.

Fig. 4. Twofold meaning contradiction

www.manaraa.com

116 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

 One possible solution to a Twofold meaning contradiction is to refine artifact
contributions to objectives. If the artifact has to be preserved in the system is because
it is essential to one of the objectives. If that objective does not exist, the artifact
should be removed. At the end, the model could appear as seen in Fig. 5.

Fig. 5. One possible solution to Twofold meaning contradiction. Note the different labels in the
edges from artifact to objectives with respect to Fig. 4.

6 Model Validation Method

This section presents a general method to check a model against a set of patterns. This
process will be used to apply the ideas of previous sections to a real specification. The
specification uses INGENIAS [15] as notation, which is an evolution of MESSAGE
[1]. We have chosen INGENIAS for several reasons. One is to show that it is possible
to use a different notation to express the AT patterns (i.e., the one presented in this
paper) and to model the MAS (i.e., INGENIAS in this case). Another is the
availability of the INGENIAS IDE [9], which allows us to implement and integrate
the validation of AT patterns with existing agent development tools.

The proposed process has two parameters: the contradictions to check and a set of
views that describe a MAS.

The first step of the process is to establish a mapping between the vocabulary used
in the analysis and the one of AT. Since AT and MAS methodologies model
intentional and social systems, the mapping is straightforward. Fig. 6 shows simple
mappings from AT to INGENIAS abstractions. Note that some artefacts from AT
correspond to several artefacts in INGENIAS. This happens because AT concepts are
more general than those in INGENIAS.

With these mappings, models are traversed looking for groups of entities and
relationships that fit into contradiction patterns. When one of these groups is found,
the pattern provides further information of what is the problem and what solutions
exist.

www.manaraa.com

Activity Theory for the Analysis and Design of Multi-agent Systems 117

Activity Theory INGENIAS
Activity Task, Workflow
Subject Agent, Group, Organization
Object Resource, Application, Fact
Outcome Resource, Application, Fact
Objective Goal
Tool Resource, Application
Community Group, Organization
Rules Mental states
Division of Labour Mental states

Fig. 6. Mappings between Activity Theory and INGENIAS

The third step is to solve the problem, if possible. Patterns not only point out
inconsistencies but also related patterns that explain how to solve them. For example,
a twofold meaning contradiction can be solved showing that an artefact is essential to
carry out a task despite of its negative effects, or through the introduction of further
refinement in the goals set.

7 Testing the Patterns

The case study used here as example to show the application of AT patterns in MAS
analysis, is a recommender system that relies on collaborative filtering techniques,
which is described in [7]. The full specification of the whole system can be found at
http://grasia.fdi.ucm.es/ingenias.

This collaborative filtering system assumes that if a user finds interesting a piece of
information, then other users with similar opinion and preferences may also find
interesting that piece of information.

In this system, there are two kinds of agents:
• Community agents. They represent a community of users that share common

interests. They are responsible of users’ management and information broadcast.
• Personal agents. They represent individuals who belong to the community. A

Personal Agent can be subscribed to several communities. This kind of agents is
the interface between users and the community in search and collaboration
processes.

A Personal Agent plays several roles in the system. Two of these roles (see Fig. 7)
are related with requests of subscription to communities and suggestion of
information.

www.manaraa.com

118 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

Fig. 7. A Personal Agent playing the role Subscription Requester, and their goals. The icon in
the upper left corner represents an agent, the one in upper right corner denotes a role, and
circles symbolize goals. This figure has been created with the INGENIAS IDE [9]

A Personal Agent has the goal of Provide Interesting Documents. This goal is
necessary in order to supply information to a community of users. Besides, it tries to
find new information sources and subscribe to them. This is represented with the role
Subscription Requester that pursues the goal of Subscribe to Information Sources. In
this case, the goals have no mutual dependencies in the original model except
belonging to the decomposition of a very general system goal. Workflows that satisfy
these goals have neither outputs nor tasks in common (see Fig. 8). These workflows
and their connection are shown as a producer-consumer chain of tasks and agent
mental entities (what is produced and consumed).

The connection of both workflows comes through the use of an external
application, the Statistics Manager, and the mental entity Subscribed Communities.
Subscribed Communities represents the information sources of an agent. When the
Personal Agent plays the role Subscription Requester, it pursues the goal Subscribe to
Information Sources. This goal intends to increase information sources, and therefore,
the number of communities registered in Subscribed Communities. Nevertheless, the
Personal Agent also pursues Provide Interesting Documents to the community. To
satisfy this goal, the agent executes a workflow in which their suggestions are
registered with the application Statistics Manager. These statistics are then used to
evaluate the Personal Agent. If this evaluation is negative, the agent is expelled from
the community, what decreases the number of communities in Subscribed
Communities. So, make suggestions could have a negative side effect over obtaining
information sources. The agent is pursuing two goals which affect the same entity in
an opposite way.

The previous contradiction can be described in terms of AT twofold meaning
contradiction (see Fig. 9). The activity that satisfies Provide Interesting Documents
has influence over goal Subscribe to Information Sources. It modifies the entity
Subscribed Communities, which is related with Subscribe to Information Sources.

www.manaraa.com

Activity Theory for the Analysis and Design of Multi-agent Systems 119

Fig. 8. Workflows related with Personal Agent goals of Provide Interesting Documents and
Subscribe to Information Sources. Stereotypes show the type of entities according to
INGENIAS notation. Conflicting regions are enclosed by a blue rectangle.

Besides, these goals are not related by contribution relationships. Without any
information about the effect of involved tasks, it is only possible to conclude that this
workflow could be carrying out contradictory tasks and producing side effects over
Subscribe to Information Sources.

Fig. 9. Twofold meaning contradiction for Personal Agent

www.manaraa.com

120 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

At this point, existing diagrams (see Fig. 7, Fig. 8, and Fig. 9) do not provide
information about the semantics of operations over Subscribed Communities. So the
customer should be asked about relationships between goals, the entity, and the
activity. The customer could add additional information over the contradiction
diagram (see Fig. 10) to clarify the analysis.

Fig. 10. Twofold meaning contradiction for Personal Agent with additional information

The graphical model shows that the contradiction is inherent to the system. The
Personal Agent has to carry out the activity to satisfy its goal Provide Interesting
Documents. The customer could argue that the negative side effect is due to the need
to evaluate user’s suggestions. This evaluation could cause the expelling of the agent
from the community but it is needed to preserve the quality of global information.

In this case, the negative effect may not have a solution for the Personal Agent.
Despite of this, the use of the patterns has allowed a deeper comprehension of the
contradiction which could cause a rethinking of the involved workflows. To make it,
this process should be combined with conventional analysis techniques, as it is a tool
to help in a MAS development process.

8 Conclusions

This paper has shown an approach for MAS verification that is based on the
application of Activity Theory. The verification process consists on checking a MAS
specification against a set of contradiction patterns. Such approach starts from the
hypothesis that misunderstandings, inconsistencies, and mistakes are inherent to the
development of complex software systems. Instead of looking at them just as errors,
contradictions can be considered as another steps in the development process. Also,
detecting contradictions allows establishing what parts of an analysis need further
refinements or corrections.

The use of AT has helped to understand and explain contradictions in a MAS
development process. The main characteristics of this approach are:

www.manaraa.com

Activity Theory for the Analysis and Design of Multi-agent Systems 121

• The use of AT gives a real source of contradictions having their roots in the
social component of MAS. This paper presents two of them, Double bind and
Twofold meaning. Moreover, the proximity of social concepts and humans helps
both customers and developers to analyze MAS models.

• Working with contradictions as structural patterns to match against models has
several advantages. These patterns allow a reuse of the knowledge they contain
over different methodologies. The only requirement to apply this method is that
the methodology has to be based in the agent paradigm. This makes possible to
build the needed mapping between modeling concepts and the contradiction
patterns language. Besides this, a contradiction pattern points out what to look
for, and, when found, its correspondence with the model explains the problem.
Finally, the structural approach gives also a simple way to express possible
solutions to the problem according to the context.

• A graphical notation allows to bridge the gap between experts and non-experts.
Here we use a widespread language, UML, as the basis to express these
contradiction patterns.

The experimentation has exposed three main concerns when applying this
approach, which are the subject for future work. The first one is how to detect if a
contradiction is meaningful. In the case of the Twofold Meaning, the analyst needs
customer’s assistance to decide if the contradiction exists or not. The customer is the
person who really knows the problem domain and the meaning of concepts in the real
world. But it is a very hard work for a non-expert to understand a software analysis:
the customer needs the analyst’s help. Here emerges the second issue: tools used to
express contradiction patterns have to be understandable and accurate both for
customers and analysts. The third issue is related with the development process, how
to make it incremental. If contradictions are going to guide the whole process, they
should be applicable from requirement elicitation to design with different levels of
detail.

References

1. Caire, G., Coulier, W., Garijo, F. Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P.,
Stark, J., Evans, R., and Massonet, P.: Agent Oriented Analysis using MESSAGE/UML.
In: Wooldridge, M., Weiss, G., and Ciancarini. P. (Eds.): The Second International
Workshop on Agent-Oriented Software Engineering (AOSE 2001). Lecture Notes in
Computer Science, Vol. 2222. Springer-Verlag (2002) 119–135.

2. Castro, J., Kolp, M., and Mylopoulos, J.: A Requirements-Driven Development
Methodology. In: Proc of the 13th International Conference on Advanced Information
Systems Engineering CAISE'01, Interlaken, Switzerland, June 4-8, 2001.

3. Cost, R. S., Chen, Y., Finin, T., Labrou, Y., and Peng, Y.: Using Colored Petri Nets for
Conversation Modeling. In: Issues in Agent Communication. Springer Verlag, 2000.

4. Engeström, Y.: Learning by expanding. Orientakonsultit, Helsinki. 1987.
5. Ferber, J., Gutknecht, O., and Michel, F.: From Agents to Organizations: an Organ-

izational View of Multi-Agent Systems. In this book.
6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley Professional Computing Series. 1995.

www.manaraa.com

122 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón

7. Gómez-Sanz, J., Pavón J. and Díaz-Carrasco, A.: The PSI3 Agent Recommender System.
In: Cueva J.M. et al. (Eds.): International Conference on Web Engineering, ICWE 2003,
Proceedings. Lecture Notes in Computer Science 2722, Springer (2003) 30–39.

8. Iglesias, C., Mercedes Garijo, M., Gonzalez, J. C., and Velasco, J. R.: Analysis and design
of multiagent systems using MAS-CommnonKADS. In: Singh, M.P., Rao, A., Wooldridge,
M.J., (eds.): Intelligent Agents IV. LNAI 1365, Springer-Verlag (1998) 313–326.

9. INGENIAS IDE, http://sourceforge.net/projects/ingenias/.
10. Kuutti, K.: Activity Theory as a potential framework for Human-computer interaction

research. In B.A. Nardi, (ed.), context and consciousness: Activity Theory and Human-
Computer Interaction. Cambridge, MA: MIT press. 1996.

11. Leontiev, A. N.: Activity, Consciousness, and Personality. Prentice-Hall. 1978.
12. Maes, P.: Modeling Adaptative Autonomous Agents. Artificial Life Journal 1, No. 1 & 2,

MIT Press, 1994.
13. Newell, A.: The knowledge level. Artificial Intelligence 18 (1982) 87–127.
14. OMG: Unified Modeling Language Specification. Version 1.3. http://www.omg.org
15. Pavón J. and Gómez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS. In:

Vladimír Marík, Jörg Müller, Michal Pechoucek (Eds.): Multi-Agent Systems and
Applications III, 3rd International Central and Eastern European Conference on Multi-
Agent Systems, CEEMAS 2003, Prague, Czech Republic, June 16-18, 2003, Proceedings.
Lecture Notes in Computer Science 2691, Springer (2003) 394–403.

16. Sykara, K.: Multiagent systems. AI Magazine 19(2). 1998.
17. Vygotsky, L. S.: Mind and Society. Cambridge MA, Harvard University. 1978.
18. Wooldridge, M., Jennings, N. R., and Kinny, D.: The Gaia Methodology for Agent-

Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems 3
(2000) 285–312..

19. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering
(RE'97) Jan. 6-8, 1997, Washington D.C., USA. IEEE Press (1997) 226–235.

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 123–137, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Design Taxonomy of Multi-agent Interactions

H. Van Dyke Parunak1, Sven Brueckner1, Mitch Fleischer1, and James Odell2

1Altarum, 3520 Green Ct Ste 300
Ann Arbor, MI 48105 USA, +1-734-302-4600

{van.parunak,sven.brueckner,mitch.fleischer}@altarum.org
2 James Odell Associates, 3646 Huron River Drive

Ann Arbor, MI 48103, +1-734-994-0833
email@jamesodell.com

Abstract. Agent interactions are frequently characterized as “coherent,”
“collaborative,” “cooperative,” “competitive,” or “coordinated.” These terms
specialize the more foundational category of “correlation,” which can be
measured by the joint information of a system. “Congruence”is orthogonal to
the others, reflecting the degree to which correlation and its specializations
satisfy user requirements. A taxonomy of these mechanisms can guide the
design of multi-agent interaction. Lack of correlation is sometimes necessary,
and requires the use of formal stochasticity.

1 Introduction

Designers of multi-agent systems need to discuss agents’ joint action in a disciplined
way that current usage does not support. Some circles emphasize cooperation as the
dominant theme (e.g., the title of [23] or the subtitle of [46]), but often the system
designer does not care whether the agents cooperate or contend, so long as their
behavior is coordinated in a certain way. Market mechanisms achieve coordination
through mechanisms that are at least competitive and sometimes contentious. Both
contention and cooperation presume a cognitive model that some architectures do not
satisfy. Other terms for agent interaction include “coherence” and “collaboration”
Taking advantage of the pervasive use of the Latin co- and con- in the English
lexicon, we refer to them collectively (including nominal, verbal, and adjectival
forms) as “Co-X,” and from this point capitalize them.

Paper titles from [6, 18], ICMAS’95-00, Agents’97, 98, 00, and 01, and
AAMAS’02 illustrate the proliferation of terms describing agent interactions. From
1981 through 1993, “Cooperate”1 accounted for eight of the twelve “Co-X” terms in
titles, “Coordinate” for three, and “Coherent” for one. “Collaborate” appeared in
1994, and “Compete” in 1995. For 1994 through 2002, 120 Co-X terms were used,
with “Coordinate” at 41%, followed by “Cooperate” at 38%, “Collaborate” at 16%,
and “Compete” and “Cohere” at 2.5% each. The vocabulary is growing beyond
“Cooperation.” Yet, review of this literature shows that there is little agreement on

1 Including the noun “Cooperation” and the adjective “Cooperative.” When we refer to one

grammatical form of a given word, we intend our observations to apply to the others as well.

www.manaraa.com

124 H. Van Dyke Parunak et al.

defining the various members of Co-X. Formal analyses of teams and social behavior
(e.g., [11, 12, 13, 43]) helpfully refine concepts such as common knowledge, joint
intentions, commitments, obligations, and social norms. These and related concepts
help achieve the behavior that Co-X describes, but the usage of the Co-X terms
themselves remains intuitive and sometimes inconsistent.

A taxonomy of these and other terms can enable a more precise description of how
agents interact. This precision is a critical contribution to agent-oriented software
engineering, since it provides a foundation for improved system specifications and
improved communication among users, designers, and implementers of multi-agent
systems. Under our definitions, the terms are neither a mutually exclusive spanning
set such that every agent-based system belongs to exactly one term in the set
(“categories”) nor an orthogonal set each of whose terms can be applied to all agent-
based systems (“perspectives”). A formal taxonomy requires a complete structure of
both categories and perspectives [31], but at this point we claim only, in the words of
one reader of an earlier draft, “a nice start.”

Section 2 defines the most general term, “Correlation,” statistically, without
assumptions about either the internal structure of the agents or the relative
centralization or decentralization of their behavior. Section 3 defines “Coordination”
as Correlation that results from information flows among agents. When these flows
result from individual agent intentions, we speak of “Cooperation” and
“Competition,” discussed in Section 4, along with “Collaboration,” which is the
intersection of Cooperation and “Conversation” (a specialization of Coordination).
Section 5 discusses the “Congruence” of group behavior with system-level intentions.
Section 6 returns to the fundamental notion of Correlation and examines ways in
which it can and cannot be avoided. Section 7 offers a summary.

2 Correlation: Behavioral Joint Information

The most generic description of what agents do together is their joint information,
otherwise known as their correlation entropy, joint entropy, or mutual entropy [2].
This quantity can be determined empirically, without access either to the internal
structure of the agents or to the broader system within which they are embedded. A
set of agents with positive joint information is “Correlated.” In some cases, such
empirical observations may be sufficient to impute cognition to agents whose internal
structure is unknown [8, 21, 34].

Joint information can be computed for many aspects of the agents. We are
interested in agent behaviors, so we compute it over agent actions. At each time step,
each agent (indexed by i) can execute one of ni actions { }

iinii aaa ,,, 21
. Let pij be the

probability that agent i executes action aij. We estimate this quantity by maintaining a
time series of the agent’s last k actions, counting the actions of each type, and
dividing by k. One measure of the agent’s behavior over time is its Shannon entropy,

()
=

−=
in

j
ijiji ppaH

1
2log . This standard definition makes no assumptions about the

independence of the elements in the set that generates the pij. It is simply an empirical
characterization of their relative prevalence. (If k is small compared with agent
lifetime, one can index pij and thus H with time t, referencing the window of length k

www.manaraa.com

A Design Taxonomy of Multi-agent Interactions 125

centered at t.) We can characterize the entropy of the overall system in terms of the
various combinations of actions of individual agents. E.g.,, for two agents, the
maximum total number of system actions is n1*n2, p is indexed over joint actions, and

the system entropy is ()
=

−=
21*

1
221 log,

nn

j
jj ppaaH (again, indexable by t).

System entropy is subadditive, H(a1,a2) ≤ H(a1) + H(a2). Equality obtains when
individual agent behaviors are statistically independent, and fails when they are
dependent. The difference I(a1:a2) ≡ H(a1) + H(a2) - H(a1,a2) is the correlation, mutual,
or joint entropy, or the joint information. The latter term avoids connotations of
disorder implicit in “entropy.” Agent behaviors in a system with high joint
information are more Correlated with one another, and in that sense more orderly,
than when joint information is low.

Agents are Correlated when their actions depend statistically on those of other
agents. It does not matter at this level whether this Correlation results from
information flows among the agents or between them and a central controller, or
whether its roots are cognitive or subcognitive. Correlation manifests itself in an
increase of the system’s joint information, and we propose using this quantity as a
measure of system Correlation. (Thus, one system has a higher Correlation than
another just when the joint information of the first is greater than that of the second.)
This perspective permits us to distinguish the fact of Correlation from the mechanisms
used to achieve it.

For example, suppose that each of two agents needs access to a widget to perform
its duties; that there are two widgets available, and that each agent accesses each
widget half of the time. Then the probability that agent a1 is accessing widget 1 is p1,1

= 0.5, as are p1,2, p2,1, and p2,2. Assume that a widget works better when only one agent
is using it at a time. Each individual agent entropy H(ai) is –2*0.5 log2(0.5) = 1.0. At
the system level, there are four possible joint actions: both agents accessing widget 1,
both accessing widget 2, a1 accessing widget 1 and a2 widget 2, and vice versa. If the
agents do not Coordinate their activities, then each of these four possibilities is
equally likely, with probability 0.25, and the system entropy H(a1,a2) is –4*0.25
log2(0.25) = 2 = H(ai), so the joint information is 0. Now assume the agents’
behaviors are Correlated (by whatever means) so that they avoid the joint actions in
which they both choose the same widget. Now there are only two system actions,
each with probability 0.5, and the system entropy is 1, less than the sum of the agent
entropies. The difference, 1, is the joint information between the agents.

We illustrate joint information in a model of multi-agent resource allocation, the
minority game [36]. At each time step each of the N agents in the population (where N
is odd) seeks to allocate itself to one of two resources. Each agent receives a point
each time it reaches the less-occupied (minority) resource. The system goal is to
maximize the total points awarded to the entire population (equivalently, to minimize
the variance in the population of either resource). The agents have access to a time
series identifying which resource was in the minority at each past cycle. In each turn
of the game, the agents use the last m entries in this time series to choose the resource
they will access on the next time step. The quantity z = 2m/N reflects the normalized
size of the strategy space available to the agents.

www.manaraa.com

126 H. Van Dyke Parunak et al.

Fig. 1. Inefficiency vs. Size of Strategy Space in Minority Game.

Figure 1 plots the normalized variance σ
2

/Nas a function of z. Low variance reflects
high system-level payoff, so desirable behavior is at the minimum of this curve,
where z ≈ 0.34. The dashed line shows the performance if all agents made random
choices. The minimum is a spin-glass phase transition, discussed in more detail in
[26, 38]. As z decreases below this point, the system performance degenerates until
the agents are doing worse than with random choices. In this region, the time series of
minority groups [25] show “herding” behavior. Relatively few distinct strategies are
available for small m, with high probability that agents’ decisions will overlap. Above
the phase transition, the agents do better than random, but as z increases, performance
approaches the random limit as an asymptote.

Fig. 2. Joint Information in the Minority Game.—Error bars mark one standard deviation.

Consider a set of 61 agents. Each agent’s entropy is computed from its probability
of choosing resource 0 or 1 at each step. The entropy of the system is computed from
the probability of a specific vector of 61 individual agent choices at a time step. Thus
the size of the system’s state space is 261 ≈ 1018. Reasonable experimental runs with
this system are on the order of 104 to 106 steps, far too short to estimate probabilities
over this state space. Instead, we focus on subsystems of six agents each. Such a
subsystem has a state space of 26, and we can reliably estimate probabilities with
experiments of 104 ≈ 213 steps. Each run of 5001 steps lets us look at ten subsystems of
six agents each, and we conduct thirty runs in all. Fig. 2 shows the Correlation,
measured by the joint information. This figure has three important features,
corresponding to the three regions of Figure 1.

www.manaraa.com

A Design Taxonomy of Multi-agent Interactions 127

1. The Correlation is highest for low m, consistent with the analysis in [25] showing
herding behavior in this region. Within the low region, the mean value appears to
increase from m = 1 to m = 2 before declining for m > 2, but given the size of the
standard deviation in region, the most that can be said is that the Correlation is
comparable for these two values. There are few distinguishable strategies available
to the agents for low m, resulting in higher Correlation among their behaviors.

2. High m is associated with low Correlation, corresponding to the region where
agent decisions approach the random limit. Thus the general shape of the curve is
logistic: low slope for low and high m, and steep slope in between.

3. There is a deviation from this general shape between m = 4 and m = 5, the region
that corresponds to the phase transition (which would be at m = 4.37, though our
experiments do not sample this point).
This illustration of joint information has several lessons for designers of multi-

agent systems.
• Joint information can be computed for a realistic system, offering a basis for

metrics that will enable designers to specify degrees of Correlation. Since
Correlation is the foundation on which the other members of Co-X are
constructed, this formalism is an important tool for comparing different systems
in terms of the degree of joint activity that their members achieve.

• When estimating joint information from observations of a system (as opposed to
computing it analytically from a system specification), attention must be paid to
sampling issues.

• Joint information is not the same as performance. Figure 1, which estimates
overall system performance, has a very different shape from Figure 2, which
shows Correlation. System designers must recognize this distinction, discussed in
more detail in Section 5.

3 Coordination: Communication

Perhaps the most commonly used member of Co-X is “Coordination.” It is prominent
in the ACM computing classification system under I.2.11, “Distributed Artificial
Intelligence” [1] (paired with “Coherence,” discussed under “Congruence” below).
“Correlation” describes simply the fact of statistical non-independence among agent
behaviors, while “Coordination” implies a causal process. Correlation can emerge
among randomly generated numbers as a statistical fluke, but when it arises from a
causal process, that process involves communication, that is, information flow
between an individual agent and its environment. The environment, in turn, is
everything outside the individual agent’s boundary. The options for this flow stem
from the contents of this environment, which include both other agents and
environmental state variables. (A side effect of this definition is to require redefinition
of either “Coordination” or “communication” in paper titles of the form,
“Coordination without communication” [3, 15, 16, 40].)

The environment includes other agents, not only software agents but also human
stakeholders, system designers, and conventional computer systems. The relationship
between two such agents will be one of two types, depending on the state of the
agents and the rules of the system (expressed, for example, in the agents’ roles [35]

www.manaraa.com

128 H. Van Dyke Parunak et al.

Table 1. Categories of Communication

and the protocols in which they participate). When the agents can say “No” to one
another within the rules of the system, they are “peer agents.” When one of them (say
agent A) can say “No” to the other (B), but B cannot say “No” to A, we call A the
“distinguished agent” and B the “subordinate.” The relationship between two agents
may be fairly fixed (for example, the relationship between a human programmer and
her software agent). Or it may vary over time (as when peer agents negotiate a work
plan that calls for one of them to supervise the other, resulting in a distinguished-
subordinate relationship during execution). These concepts can be developed more
formally through dependency and autonomy theory [10, 30].

The environment has state variables that the agents can sense, and may support its
own processes that couple its state variables and cause them to change over time.
Environmental variables are of two types. The values of endogenous variables change
over time depending on the actions of peer agents. The values of exogenous variables,
such as sunspot frequency, change independent of the actions of peer agents, but may
result from actions of the distinguished agent, and are often scripted by the system
designer.

In such an environment, Correlation mechanisms can be either centralized or
decentralized. In addition, the information flows involved may be either direct from
agent to agent (ignoring those aspects of the environment that make up the
communication system) or indirect (mediated through explicitly modeled
environmental state variables). Table 1 reflects these categories, which offer a design
template for agent interaction.

Centralized mechanisms for Correlation all involve communication between the
distinguished agent and its subordinates. This flow may be direct (when the
distinguished agent Constructs or Commands the subordinates) or indirect (when the
distinguished agent Constrains the subordinates by manipulating exogenous
environmental variables visible to the subordinates). In Correlation through
Command, used commonly in robot soccer, holonic manufacturing, and some
simulation applications, agents behave much like objects, executing methods invoked
by incoming messages. The focal point algorithm advocated by [15] and the common
utility functions implicit in [16] both rely on Construction (common programming).
In indirect centralized mechanisms, subordinates jointly sense changes in a shared
exogenous environmental variable. The variable’s dynamics are independent of agent
actions, so it cannot move information between subordinates. But it may serve as a
synchronizing signal that Correlates the agents’ actions. The experimenter who
configures targets and obstacles in an experimental testbed is Constraining the
subordinates, supporting Correlation through indirect centralized action.

www.manaraa.com

A Design Taxonomy of Multi-agent Interactions 129

Decentralized mechanisms for Correlation all involve communication among
peers. Most negotiation research focuses on direct peer-to-peer information flows
(“Conversation”). Indirect decentralized flows occur when peers make and sense
changes to endogenous environmental variables. This class of Coordination is called
“stigmergy,” [17], from the Greek words stigma “sign” and ergon “work”: the work
performed by agents in the environment guides their later actions. Such techniques are
common in biological distributed decentralized systems such as insect colonies [32].
A common form of stigmergy is resource Competition, which occurs when agents
seek access to limited resources. For example, if one agent consumes part of a shared
resource, other agents accessing that resource will observe its reduced availability,
and may modify their behavior accordingly. Even less directly, if one agent increases
its use of resource A, thereby increasing its maintenance requirements, the loading on
maintenance resource B may increase, decreasing its availability to other agents who
would like to access B directly. In the latter case, environmental processes contribute
to the dynamics of the state variables involved. (We reserve “Competition” for
resource Competition as a subset of Stigmergy. For the more generic opposite of
“Cooperation,” we prefer “Contention,” discussed below.)

We became aware of the active role that the environment plays in negotiation when
experimenting with an instance of the contract net for manufacturing control [29].
After carefully proving that our protocol was deadlock-free, we ran it on a physical
control system, and it promptly deadlocked. The negotiation in question concerned
the movement of a physical part from one workstation to another. Our analysis of the
protocol neglected the movement of the physical part itself. This movement conveyed
information between the two workstations, and thus between the software agents that
represented them. It represented an undocumented extension of our protocol, one that
invalidated our proof and caused the system to deadlock. The arrival of the part at the
receiving workstation gave that workstation information about the state of the system
that it would not otherwise have had, namely, that the part had been delivered.

Traditionally, the study of negotiation focuses on Coordination by means of
information flow directly from one agent to another. The mantra of situated robotics
that “the world is its own best model” [7] suggests that the problem domain may
deserve a more prominent role in the process. There are several motives for
understanding the role of the environment in Coordination, and learning to exploit it
where possible.
• It supports open, heterogeneous societies of agents. The environment is by

definition accessible to the agents that are negotiating about it. Any agent that
wishes to deal with the domain must be able to sense and manipulate it. Thus the
physics of the environment define common standards for agent interaction, in
contrast with the more arbitrary standards programmers can impose on direct
agent-to-agent communication.

• It integrates and reflects the state and dynamics of the overall problem-solving
process at a global level that is only imperfectly visible in any individual agent’s
internal model. In particular, it captures high-order interaction effects that may
escape the notice of any individual agent or a priori model maintained by an
individual agent. For instance, assume agents A, B, C, and D are all interested in
resource , but A and B know only of each other, as do C and D. The load on
resource integrates information about the demands of all the agents that would
otherwise not be available to them.

www.manaraa.com

130 H. Van Dyke Parunak et al.

• It embeds domain constraints (e.g., resource limitations) directly in the reasoning
process, without the need to identify and model them in advance.

A stock market illustrates the importance of information flows mediated by
endogenous environmental variables. It affects both stock traders and business
executives, in different ways. Traders (at least those who obey SEC regulations) do
not communicate directly to determine which shares each will buy and sell. But when
a trader offers for sale a share in one company, the offer tends to depress that
company’s share price, making the company more attractive to potential buyers. Thus
information flows between traders through the stock market without Conversation. In
contrast, business executives rely extensively on Conversation in reaching contracts
with their customers and suppliers. However, they must also pay attention to indirect
information flows, including those through the same stock market. For example, if a
supplier’s stock price drops precipitously, the supplier may not be able to raise needed
capital, and in spite of its explicit promises in a negotiation, it may not be able to
fulfill its obligations.

The Minority Game is an excellent example of Stigmergy, and of Competition in
particular, and we discuss its implication for indirect Coordination further in [36].

These mechanisms reflect Coordination mechanisms recognized by sociologists in
organizational design. One prominent discussion [27] distinguishes five such
mechanisms:
1. Mutual adjustment, informal communication among workers, corresponds to the

Direct Decentralized quadrant of Table 1, which we call “Conversation.”
2. Direct supervision is our “Command,” which represents the real-time portion of

our “Direct Centralized” quadrant.
3. Standardization of work processes (e.g., setting up a work station on an assembly

line) is adjusting the environment to Constrain agents to behave in a certain way,
and thus corresponds to our “Indirect Centralized” quadrant.

4. Standardization of outputs insures that intermediate outputs from one worker can
be input to the next, enabling “stigmergy,” our “Indirect Decentralized” quadrant.

5. Standardization of skills and knowledge trains workers to behave in Coordinated
ways. This is our “Construction,” in the “Direct Centralized” quadrant of the table.

4 Cooperation2 and Contention: Intent

Correlation is an empirical concept that requires no knowledge about agents’ internal
structure or outward organization. The focus on communication emphasized by
Coordination requires attention to inter-agent issues, but leaves agents’ internal logic
undefined. Cooperation and Contention involve the agents’ intentions. For example,
behaviors of traders in a commodity market are highly Correlated, resulting from
information flows among them (thus Coordination). Are they Cooperating or
Contending? Two traders bidding for the same commodity might be Contending (each
seeking to wrest control from the other), Cooperating (pumping the price up to

2 Axtell [4] notes that game theoreticians would reverse our definitions of “coordination” and

“cooperation.” Our definitions are more in line with the usage in the MAS community. The
exact words used are much less important than precision in distinguishing the processes
involved.

www.manaraa.com

A Design Taxonomy of Multi-agent Interactions 131

increase the value of their current holdings), or simply Competing (in the sense
defined in Section 3). The difference can only be resolved by determining their intent
(compare [24]).

A necessary condition for Cooperation is the existence across the Cooperating
agents of joint intentions (e.g., [11]). Similarly, contention suggests one agent’s
intention to frustrate another. To our knowledge, this notion of “antagonistic intent”
has not been formalized, but could be along the same lines as joint intention. We do
not require intention for Competition, respecting the common use of the term for
agents seeking common limited resources without harboring malice toward one
another.

The definition of Cooperation and Contention as Correlation driven by agent intent
has two important implications.

First, imputing Cooperation and Contention to agents also requires imputing
cognition to them. This requirement is easy for Cognitive architectures (e.g., SOAR
[28] or BDI [37]), which imitate human cognition. It is less direct for Behavioristic
agents. Such agents, inspired by work in artificial life [33], are “black boxes,” defined
only by their outward behavior, and their internal programming makes no claims to
imitate cognition. It is possible to impute cognition to such agents in a disciplined
way [34], but doing so would require observing other behaviors beyond the specific
actions to be classified as Cooperation or Contention, in order to deduce their
intentions toward one another.

Second, neither Cooperation nor Contention requires direct decentralized
communication (“Conversation,” Table 1), but might result from centralized design-
time information flows or interactions through the environment. The special case
when agents both Converse and Cooperate is “Collaboration”; “Coalition” describes
the resulting state of affairs.

5 Congruence and Coherence: Usefulness

None of the modes of interaction discussed thus far is necessarily desirable. Consider
the simple problem of Correlated access by two agents to two widgets considered in
Section 1. If the agents avoid choosing the same widget, they are Correlated,
achieving a joint information of 1. They will be just as Correlated if they always
choose the same widget, but in this case productivity would be lower in the Correlated
system than in the random one. Similar examples can be constructed to illustrate that
increased Coordination, Cooperation, and Competition do not always result in more
productive systems.

The crucial insight here, and one of great importance for agent-oriented software
engineers, is that systems can be associated with goals at two levels: the system, and
the individual agents. (Cognitive agents reason explicitly about these goals, while in
behavioristic agents they are imposed by the agent designer, but they are still agent-
level goals.) Categories such as Contention and Cooperation take into account
individual agent goals, but not system goals. We propose “Congruence” to
characterize the degree to which the pattern of agent interactions (at any level from
Correlation through Contention and Cooperation) satisfies (“is Congruent with”)
system-level goals. “System-level” is critical. For example, in an e-commerce system,
each individual agent may have a different user with different goals (e.g., increased

www.manaraa.com

132 H. Van Dyke Parunak et al.

market share vs. short-term profit). Congruence deals, not with the conformity of
individual agents to the goals of their respective users, but with the conformity of the
system as a whole to its system-level goals (e.g., bounded transaction times,
information availability, and transaction security). The relation among the agents that
yields Congruence is “Coherence” (Figure 3), a term that without definition in the
ACM Computing Classification [1]. (Durfee et al. [14] define “Coherent” as “well-
coordinated.”)

Fig. 3. Congruence and Coherence

System-level goals can arise in two different ways. In an engineered system, they
are defined by the system’s creators [41]. We term these “top-down goals.” In a
cognitive multi-agent system, they can also emerge from agent interactions [42],
whether through democratic processes or by the imposition on other agents of the
individual goals of an agent that has gained a controlling position in the society.
These goals are thus “emergent goals.” Several points need to be made.
1. Congruence does not presuppose either peer-to-peer information flows or

individual agent intent. It may exist with any form of Correlation.
2. Congruence cannot be defined for systems that do not have system goals. Like

intentions, emergent goals are most naturally associated with cognitive agents.
Behavioristic agents can be congruent in three ways. First, their creator may define
their system-level goal. Second, in a larger system that includes both non-cognitive
and cognitive agents, the cognitive agents may define emergent system goals for
the entire system, and do their best to impose them on the non-cognitive portion of
the system. Third, such goals may be imputed to them per [34].

3. A system may have conflicting goals, arising in populations of non-cognitive
agents from inconsistency in the designer’s goals, in populations of cognitive
agents from tensions among different emergent processes, and in created systems
of cognitive agents from a disjunction between the designer’s goals and goals that
emerge within the population. Congruence is defined only with respect to a
specified goal or set of goals.
System-level goals are needed to define Congruence, but whether or not they affect

it depends on whether individual agents can sense and respond to them. Emergent
goals that do change the behavior of the system exemplify “downward causation” [39].

The minority game exemplifies a top-down system goal (maximum total points
awarded across the population). This goal is not downwardly causative, because the

www.manaraa.com

A Design Taxonomy of Multi-agent Interactions 133

agents do not know of it or reason about it, and the system is Congruent only in the
vicinity of the phase transition. Changes in Correlation (Figure 2) reflect the coarse
structure of system performance (Figure 1), but are not statistically correlated with
them. In particular, the highest level of Correlation (and thus Coordination) occurs for
low m, while the system is most Congruent and the agents most Coherent for
intermediate levels of m.

System-level goals (e.g., “norms,” “conventions,” and “obligations”) are the
subject of considerable study ([13] and references). Whatever such theory one adopts
will set a standard against which to assess Congruence.

6 Anticorrelation

The various members of Co-X are all refinements of Correlation. Our discussion of
Congruence and Coherence suggests that more Correlation is not always good thing.
1. The agent system might be in Contention with an adversary that could exploit

observed regularities in its performance. In such cases, the system should avoid
regularities, and appear as though it were made up of statistically independent
entities.

2. Due perhaps to similarities in their internal coding, the agents may tend to “run
into” each other in the problem space, and need to spread out to do their job
effectively.

3. The agent system may use some form of weak search (e.g., particle swarm
optimization [22] or evolutionary computation [19]) to search the space of system
behaviors. Such mechanisms assume ergodicity: they depend on the system’s
dynamics to sample the state space, and Correlation leads to under-represented
regions of the state space.
Agents can anticorrelate if each makes its decisions via random processes (either at

a central controller or in each agent). Can they be more deliberate, basing decisions
on either peer-to-peer or master-slave information flows? We can make two
observations.
1. Any system with at least two Correlated agents is Correlated. Let A = {ai} be the

set of peers, B = {bi} ⊂ A the subset that is Correlated, H(A) the entropy of the
entire system, and H(ai) the entropy of the ith peer. Perfect anticorrelation requires
H(A) = H(ai) (summing over the elements of A). A component of this sum is
H(B). But B is Correlated, so H(B) < H(bi). Each bi contributes less than H(bi) to
H(B) and thus to H(A), so H(A) < H(ai), and the entire system is Correlated.

2. Any set of more than one anticorrelating agents must use a random process in their
decision-making to achieve anticorrelation. Assume otherwise. Then their actions
are a deterministic function either of a non-random central signal or of
observations (direct or indirect) of one another’s behavior. But then each agent’s
behavior is not statistically independent of the actions of the other agents, and the
system will be Correlated.
Observation 1 makes it unlikely that MAS engineers will ever deal with perfectly

anticorrelated systems. Correlation wants to happen. If agents are behaving in any
way other than randomly, their aggregate behavior will reflect it. In other words,
emergent behavior is ubiquitous. This behavior may not be Congruent (e.g., herding

www.manaraa.com

134 H. Van Dyke Parunak et al.

in financial markets), but it will be Correlated. Rather than viewing emergent
behavior as a threat to be suppressed by constraining the behavior of individual agents
so that the system exhibits only a subset of its total potential behavior [9, 20, 45],
software engineers should understand the mechanisms that drive emergence so that
we can harness it for productive use.

Observation 2 emphasizes the importance of stochasticity as an element of multi-
agent systems. If we want agents to spread out through their joint state space, we can
do no better than to have them flip coins. In the parlance of statistical mechanics, such
a device provides the “symmetry breaking” that avoids undesirable Correlation. A
system’s level of organization is inversely proportional to its level of symmetry [5],
and random variations among agents is a powerful way to introduce differences that
can be amplified by agent interactions to yield self-organization. Many techniques of
swarm intelligence [32] include a stochastic element, including random walks in ant
path planning, Fermi functions in swarm sorting algorithms, and stochastic face-offs
in the emergence of organization in Polistes wasps. Elsewhere [34] we exhibit a
simple artificial agent whose performance is dramatically improved by addition of
random noise.

7 Conclusion

Agents do things together. Clear discussions of what they do, and effective designs of
how to do it, require precision in the terms we use to describe joint behavior. Such
improved precision is particularly critical for software engineers responsible for
specifying, designing, constructing, and deploying multi-agent systems.

The fundamental characteristic is Correlation, defined as nonzero joint information
over a population of agents. Agent Correlation is a purely behavioral notion. It
requires knowledge only of the observed actions of the agents. If we admit other sorts
of knowledge, we can refine it in three orthogonal ways.

Coordination is Correlation with a focus on the information flow that enables it,
and six different flavors can be distinguished: Conversation, Construction, Command,
Constraint, Stigmergy, and Competition. The main distinctions are whether the
information flow is centralized or peer-to-peer, and direct or indirect Thus
Coordination implies a particular architecture between agents, but is silent about their
internal processing.

Cooperation and contention modulate Correlation by the intent of individual
agents. Cooperation requires joint intentions, while Contention requires an intention
on the part of one agent to frustrate another. Both concepts impute cognition to the
participating agents (thus requiring special care in the case of behavioristic agents),
but they are silent regarding the inter-agent architecture, and thus independent of
Coordination. A system with both Conversation (direct peer-peer communications)
and Cooperation (joint intent on the part of the individual agents) exhibits
Collaboration, which results in Coalitions of agents.

Congruence measures alignment of an agent system with a system-level goal,
which may be defined either endogenously or exogenously. It is independent of both
inter-agent and intra-agent architecture. Coherence is the relation among agents that
yields Congruence. Congruence is not necessarily a monotonic function of

www.manaraa.com

A Design Taxonomy of Multi-agent Interactions 135

Correlation. Sometimes increased Correlation (or Coordination, or Cooperation) may
yield lower Congruence.

More disciplined attention to these distinctions will enable more effective
specification, design, and deployment of multi-agent systems. This analysis suggests a
number of directions for future work.
• This preliminary taxonomy should be extended. For example, it is fruitful to

consider temporal distinctions in the ways agents work together, such as
synchrony vs. asynchrony [44].

• The taxonomy provides a basis on which to review current agent engineering
models and modeling languages (e.g., AUML) for completeness and
expressivity.3

• The next step after defining the members of Co-X is to discuss how to design
agents that achieve them. Such a discussion could extend the preliminary
suggestions in this paper (e.g., our taxonomy of communication types) with
specific patterns and criteria for selecting among them.

Acknowledgements. This work is partly supported by DARPA ANTS and NA3TIVE
under contracts F30602-99-C-0202 and N00014-02-C-0458 to Altarum. The views
and conclusions in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

References

[1] ACM. The ACM Computing Classification System [1998 Version]. 1998. HTML,
http://www.acm.org/class/1998/.

[2] C. Adami. Introduction to Artificial Life. New York, NY, Springer Telos, 1998.
[3] R. C. Arkin. Cooperation without Communication: Multiagent Schema-Based Robot

Navigation. Journal of Robotic Systems, 9(3):351–364, 1992.
[4] R. Axtell. Personal communication 2002.
[5] P. Ball. The Self-Made Tapestry: Pattern Formation in Nature. Princeton, NJ, Princeton

University Press, 1996.
[6] A. H. Bond and L. Gasser, Editors. Readings in Distributed Artificial Intelligence. San

Mateo, CA, Morgan Kaufmann, 1988.
[7] R. A. Brooks. Intelligence Without Representation. Artificial Intelligence, 47:139–59,

1991.
[8] B. Browning, G. A. Kaminka, and M. M. Veloso. Principled Monitoring of Distributed

Agents for Detection of Coordination Failures. In Proceedings of Distributed Autonomous
Robotic Systems (DARS-02), 2002.

[9] S. Bussmann. Agent-Oriented Programming of Manufacturing Control Tasks. In
Proceedings of Third International Conference on Multi-Agent Systems (ICMAS'98), 57–
63, IEEE Computer Society, 1998.

[10] C. Castelfranchi. Founding Agent's 'Autonomy' on Dependence Theory. In Proceedings of
14th European Conference on Artificial Intelligence, 353–357, IOS Press, 2000.

[11] P. Cohen and H. J. Levesque. Teamwork. Technical Report Technote 504, SRI
International, Menlo Park, CA, 1991.

3 We are grateful to an anonymous referee for suggesting this and the following point.

www.manaraa.com

136 H. Van Dyke Parunak et al.

[12] F. Dignum and B. v. Linder. Modelling social agents: Communication as actions. In M.
Wooldridge, J. Muller, and N. Jennings, Editors, Intelligent Agents III, vol. 1193, LNAI,
205–218. Springer-Verlag, New York, NY, 1997.

[13] F. Dignum, D. Morley, E. A. Sonenberg, and L. Cavedon. Towards Socially Sophisticated
BDI Agents. In Proceedings of Fourth International Conference on MultiAgent Systems
(ICMAS'2000), 111–118, IEEE Computer Society, 2000.

[14] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Coherent Cooperation among
Communicating Problem Solvers. IEEE Transactions on Computers, C-36:1275–1291,
1987.

[15] M. Fenster, S. Kraus, and J. S. Rosenschein. Coordination without Communication:
Experimental Validation of Focal Point Techniques. In Proceedings of International
Conference on Multi-Agent Systems (ICMAS'95), 102–108, AAAI, 1995.

[16] M. R. Genesereth, M. Ginsburg, and J. S. Rosenschein. Cooperation without
Communication. In Proceedings of National Conference on Artificial Intelligence
(AAAI'86), 51–57, AAAI, 1986.

[17] P.-P. Grassé. La Reconstruction du nid et les Coordinations Inter-Individuelles chez
Bellicositermes Natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai
d'interprétation du Comportement des Termites Constructeurs. Insectes Sociaux, 6:41–84,
1959.

[18] M. N. Huhns and M. P. Singh, Editors. Readings in Agents. San Francisco, CA, Morgan
Kaufmann, 1998.

[19] C. Jacob. Illustrating Evolutionary Computation With Mathematica. San Francisco,
Morgan Kaufmann, 2001.

[20] N. R. Jennings. On Agent-Based Software Engineering. Artificial Intelligence, 117:277–
296, 2000.

[21] G. A. Kaminka, M. Fidanboylu, A. Chang, and M. Veloso. Learning the Sequential
Behavior of Teams from Observations. In Proceedings of RoboCup Symposium, 2002.

[22] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. San Francisco, Morgan
Kaufmann, 2001.

[23] V. Lesser and D. D. Corkill. Functionally accurate, cooperative distributed systems. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-11:81–96, 1981.

[24] A. Lux and D. Steiner. Understanding Cooperation: An Agent's Perspective. In
Proceedings of First International Conference on Multi-Agent Systems (ICMAS'95), 261–
268, MIT and AAAI, 1995.

[25] R. Manuca, Y. Li, R. Riolo, and R. Savit. The Structure of Adaptive Competition in
Minority Games. Program for the Study of Complex Systems, University of Michigan,
Ann Arbor, MI, 1998. URL http://www.pscs.umich.edu/RESEARCH/pscs-tr.html.

[26] M. Marsili, D. Challet, and R. Zecchina. Exact solution of a modied El Farol's bar
problem: Efficiency and the role of market impact. 1999. PDF File,
http://ttt.lanl.gov/PS_cache/cond-mat/pdf/9908/9908480.pdf.

[27] H. Mintzberg. Structure in Fives: Designing Effective Organizations. Englewood Cliffs,
NJ, Prentice-Hall, 1993.

[28] A. Newell. Unified Theories of Cognition. Cambridge, MA, Harvard University Press,
1990.

[29] H. V. D. Parunak. Manufacturing Experience with the Contract Net. In M. N. Huhns,
Editor, Distributed Artificial Intelligence, 285–310. Pitman, London, 1987.

[30] H. V. D. Parunak. Distributed AI and Manufacturing Control: Some Issues and Insights.
In Y. Demazeau and J.-P. Müller, Editors, Decentralized AI, 81–104. North-Holland, 1990.

[31] H. V. D. Parunak. Hypercubes Grow on Trees (and Other Observations from the Land of
Hypersets). In Proceedings of The Fifth ACM Conference on Hypertext, 73–81, ACM,
1993.

www.manaraa.com

A Design Taxonomy of Multi-agent Interactions 137

[32] H. V. D. Parunak. ’Go to the Ant’: Engineering Principles from Natural Agent Systems.
Annals of Operations Research, 75:69–101, 1997.

[33] H. V. D. Parunak, S. Brueckner, and J. Sauter. ERIM's Approach to Fine-Grained Agents.
In Proceedings of NASA/JPL Workshop on Radical Agent Concepts (WRAC'2001),
Forthcoming, 2001.

[34] H. V. D. Parunak and S. A. Brueckner. Imputing Agent Cognition from Dynamics. In
Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS 2003), (submitted),
2003.

[35] H. V. D. Parunak and J. Odell. Representing Social Structures in UML for Agent-Oriented
Software Engineering. In Proceedings of Workshop on Agent-Oriented Software
Engineering, 17–24, 2001.

[36] H. V. D. Parunak, R. Savit, S. A. Brueckner, and J. Sauter. Experiments in Indirect
Negotiation. In Proceedings of The AAAI Fall 2001 Symposium on Negotiation Methods
for Autonomous Cooperative Systems, 2001.

[37] A. S. Rao and M. P. Georgeff. Modeling Rational Agents within a BDI Architecture. In
Proceedings of International Conference on Principles of Knowledge Representation and
Reasoning (KR-91), 473–484, Morgan Kaufman, 1991.

[38] R. Savit, R. Manuca, and R. Riolo. Adaptive Competition, Market Efficiency, Phase
Transitions and Spin-Glasses. PSCS-97-12-001, University of Michigan, Program for the
Study of Complex Systems, Ann Arbor, MI, 1997. URL http://xxx.lanl.gov/abs/adap-
org/9712006.

[39] R. K. Sawyer. Simulating Emergence and Downward Causation in Small Groups. In
Proceedings of Multi-Agent-Based Simulation (MABS'2000), 49-67, Springer, 2000.

[40] S. Sen, M. Sekaran, and J. Hale. Learning to Coordinate Without Sharing Information. In
Proceedings of National Conference on Artificial Intelligence (AAAI'94), 426–431, AAAI,
1994.

[41] Y. Shoham and M. Tennenholtz. On Social Laws for Artificial Agent Societies: Off-Line
Design. Artificial Intelligence, 73:231–252, 1995.

[42] Y. Shoham and M. Tennenholtz. On the Emergence of Social Conventions: modeling,
analysis and simulations. Journal of Artificial Intelligence, 94(1-2):139–166, 1997.

[43] G. Tidhar, E. A. Sonenberg, and A. S. Rao. On Team Knowledge and Common
Knowledge. In Proceedings of Third International Conference on Multi-Agent Systems,
301-308, IEEE Computer Society, 1998.

[44] D. Weyns and T. Holvoet. Synchronous versus Asynchronous Collaboration in Situated
Multi-Agent Systems. In Proceedings of Autonomous Agents and Multi-Agent Systems
(AAMAS 2003), (submitted), 2003.

[45] M. J. Wooldridge and N. R. Jennings. Pitfalls of Agent-Oriented Development. In
Proceedings of 2nd Int. Conf. on Autonomous Agents (Agents-98), 385–391, 1998.

[46] M. Yokoo. Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-
Agent Systems. Berlin, Springer, 2001.

www.manaraa.com

Automatic Derivation of Agent Interaction
Model from Generic Interaction Protocols

José Ghislain Quenum, Aurélien Slodzian, and Samir Aknine

Laboratoire d’Informatique de Paris6,
8 rue du Capitaine Scott,

75015 Paris, France
{jose.quenum,aurelien.slodzian,samir.aknine}@lip6.fr

http://www.lip6.fr/OASIS/fw.html

Abstract. Interaction can take place in multi-agent systems (MAS),
only if each agent contains features devoted to it. These features are
usually difficult to implement and programmers have often to redesign
them, even when they take inspiration from generic interaction proto-
cols. Most often, interaction features are not separated from other, func-
tional, ones and this places a limitation on the reusability potential of the
agent’s interaction capabilities in different contexts. In such a situation
inconsistencies are difficult to anticipate and solve.
In this paper, we propose a method to address these issues by making
separate but still consistent models for the coordination and the func-
tional aspects of the agents and by deriving automatically the agent’s
effective interaction model from generic interaction protocols. An imple-
mentation of this method is also described.

1 Introduction

Interaction is a key concept in multi-agent systems (MAS). It brings together
agents that communicate in order to achieve their goals in the system. But,
interaction can only take place if each agent has an interaction model that is
consistent with the model the other agents have.

The implementation of sophisticated, dynamic and open agent systems is yet
confronted with the complexity of putting together the management of protocols
and the functionalities of agents. This burden is an obstacle to the development
of multi-protocol agents and hence to the openness of agent systems. Indeed, the
external behaviour of agents, even when it is inspired from generic protocols, is
most of the time re-programmed by hand.

This situation has two drawbacks. The first is the lack of flexibility. Indeed,
any modification on the agent’s internal specifications might imply changes on
the implementation of the interaction model, and reciprocally. The second draw-
back is the lack of reusability of the implemented protocols in other contexts and
the possibility of inconsistencies at runtime.

We address these issues by defining two different models of the agent, which
may be informally defined as follows:

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 138–152, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

www.manaraa.com

Automatic Derivation of Agent Interaction Model 139

– the interaction model of the agent contains a formal description of the se-
quence of communicative acts the agent commits to in order to respect a
number of coordination scenarios.

– the functional model of the agent contains a description of the functionality
of the agent in terms of information transformation.

Both models are of course related since the elements of the functional model
are the behavioural bricks that appear in the interaction model.

We furthermore propose that instead of designing the interaction model by
hand, the agent programmer builds it by using the functional model to configure
and specialise generic coordination protocols. This approach makes thus the
assumption that the agent system contains a public library of generic interaction
protocols.

Practically, we propose to the agent designer to start with the design of the
functional model of its agent, then to look for possible similarities between the
methods it contains and the agent actions which are required by the interaction
protocols he wishes to support. Even in case of incompleteness of the the func-
tional model, the programmer has immediately the specification of the missing
functionalities to support a given protocol.

On this basis, it is even possible, to assist the programmer by means of a
unification algorithm which will find out similarities by comparing the data flow
descriptions associated to the methods defined in both models. In case of failure
we also propose an adaptation algorithm which will provide a complete specifi-
cation of the missing methods. Moreover, when unification is finally successful,
the configured protocol may be completely implemented into the agent.

We argue that this methodology, will ease the process of implementing coor-
dination protocols into agents and that, thanks to the unification algorithm will
dramatically reduce the the risk of inconsistencies.

Section 2 discusses some related work. Section 3 describes our methodology
in details: the nature of the models, the algorithms and their implementation.

2 Related Work

The methodology we propose is related to two fields of multi-agent system design:
on the one hand modelling methodologies for the design of MAS and, on the
other hand, protocol engineering, which focuses on protocol construction and
description.

Many methodologies have been proposed for modelling multi-agent-systems:
Gaia [13], Multi-agent Systems Engineering (MaSE) [1], Tropos [4], Prometheus
[8], ROADMAP [11], and the Formal Methodology [2] based on UML and graphs
transformations, to quote a few. All these methodologies provide means to model
the individual agents and their interactions with their environment and hence
to produce the agent model, the service model, the environment model and
the interaction model, which is based on generic interaction protocols. However,
these approaches consider the design of a MAS as a whole while the approach we

www.manaraa.com

140 J.G. Quenum, A. Slodzian, and S. Aknine

propose focuses on making agents interoperable by means of the reuse of generic
coordination protocols.

From the protocol engineering perspective, FIPA proposes several generic
protocols [3]: FIPA-request (and its variant FIPA-request-when), FIPA-query,
FIPA-Contract-net (an extension of the Contract Net Protocol [9]). This group
also proposed a UML extension, UAML, to model interactions in MAS. Other
UML extensions have been proposed to model agent interactions: UAMLe [5],
AUML [7] and EAUML [12].

Mazouzi and al. [6] propose a generic approach for protocol engineering by
analysing, specifying and verifying the protocols. This approach derives auto-
matically formal specifications of interaction protocols from semi-formal ones
given in protocol diagrams (AUML). This approach emphasises the formal rep-
resentation of interaction protocols but does not manage the difference between
generic and specific protocols.

Tadashige and al. [10] propose a framework for exchange of protocols called
Virtual Private Community. This framework allows the agents to make their
protocols evolve dynamically. It assumes that the protocols are already designed
in the agent’s model, and provides rules to change the agent’s current state
according to the interaction execution. It does not focus on the way the protocols
are built before starting to evolve dynamically.

The protocol engineering methodologies in fact provide us with techniques
of designing new protocols. Our approach is complementary both to this and to
MAS methodologies since we are concerned with the integration of the protocols
in the agents, and with the consistency of this integration.

3 The Methodology

The methodology we propose is based on the idea of separating the agent’s
internal specifications from its interaction model, and to generate the later as
an instantiation of generic interaction protocols, where the term “instantiation”
is to be taken in the sense of a configuration or a specialisation of the generic
protocol for the agent. Indeed generic protocols specify the external behaviour
of agents only formally: they state what type of messages have to be exchanged
and when but they do not say anything about the contents of the messages. This
is exactly the role of this configuration.

The relationship between the internal specifications and the interaction
model will be established by means of the functional model of the agent, which
will contain the description of the methods the agent may use to handle data or
to produce information during interactions.

The method we propose is summarised in Figure 1. At the heart of this
method are the agent’s functional model and a standard library of generic in-
teraction protocols. We then match both models using a unification algorithm.
This unification identifies the possible similarities between the agent’s meth-
ods and actions required by the protocol. When all the actions of a role (any
communicating entity in a protocol, see below) are not paired with methods, a

www.manaraa.com

Automatic Derivation of Agent Interaction Model 141

S3

Method M1

Method M2

Method Mi

Method Mn

Rolei = {

Phasek = {

Action1={
Input=Event...

Output=Event...
}
....
}
Rolej = {

Phasel = {

Actionm={
Input=Event...
Output=Event...}

....
}

S1

T3

S2

T1

T2

S4

Runnable code

Agent’s functionalities model Protocol’s model

Abstract models

Agent’s methods

}

Protocol = {

Unification / Adaptation

Output = Output data types

}

Input = Input data types
Output = Output data types

}

Input = Input data types
Output = Output data types

}

Input = Input data types

Methodi = {

Methodj = {

Methodk = {

X

R1 Rn

Message n

Message i

Message 1

Standard library of generic interaction protocols

"Specialized" ATN

Fig. 1. Interaction models automatic derivation’s global schema

reconfiguration of this model is proposed thanks to an adaptation algorithm. This
reconfiguration consists in identifying the methods that are missing so as to allow
the agent to fully perform the desired roles. Finally, when a role is completely
unified (all the actions in the role definition are associated with agent methods),
then we replace in the interaction model the actions with the corresponding
agent methods, and we store the configured role in the agent’s interaction model
(in the form of a finite state machine).

Our method is organised in four steps:

1. abstract representation of generic interaction protocols, based on UML se-
quence diagrams;

2. abstract representation of the agent functionalities, describing the methods
the agent will use to interact;

3. specialisation of the protocols by matching their actions to the agent’s meth-
ods;

4. conversion of unified roles into abstract machines, and insertion in the inter-
action model.

Notice that roles can be selected gradually to run steps 3 and 4.

3.1 The Generic Interaction Protocol

The model that describes the generic interaction protocol uses some concepts
that we define first; our definitions here are still informal. We then give an
in-depth description of this model and finally provide some representation ex-
amples.

www.manaraa.com

142 J.G. Quenum, A. Slodzian, and S. Aknine

Definitions.

Interaction protocol. A context wherein entities are exchanging data or
knowledge in order to achieve some goals. It is composed of three elements:
roles, messages and partially sorted exchange sequences.

Role. An entity structurally involved in an interaction protocol. The activity
of a role is divided into phases. A role is a definition object which imposes
constraints on agents that are supposed to play this role.

Phase. A consistent part of an interaction protocol inside a role. While the
phases go on, some actions are accomplished so as to cope with the events
occurring in the role’s environment.

Event. A situation occurring in a role during interactions (phase firing, end of
a phase, message reception, message emission, etc.)1

Action. An operation a role executes in a determined phase. An action might
be considered as a method which would have events as input and output
arguments.

Once these concepts are defined, an in-depth examination is required to iden-
tify the way to combine them.

The graphical representation of sequence diagrams only shows the commu-
nication between entities (roles). However, there might be some information the
role keeps “centrally” in order to communicate with several other roles in the
context of the same protocol. This situation requires us to look for information
description beyond the communication aspect, in order to thoroughly describe
a role.

Continuing from the concepts and techniques we have just identified, we will
build an abstract model that thoroughly describes the role’s interactions.

Abstract Model. The abstract model we propose here is formalised as a set of
EBNF rules. Here, only a part of the rules are presented and commented. The
whole abstract model is described in Appendix D.

1. In this model, a protocol has some properties (title and family), and is
composed of roles and message patterns. Figure 2 shows these elements.

<protocol> → <protocolproperties><roles><messagepatterns>
<protocolproperties> → title family
<roles> → <role><role>|<roles><role>
<messagepatterns> → <messagepattern+>

Fig. 2. Syntactic rules of a protocol

2. As in Figure 3, a role is decomposed into a set of phases.
1 cf. table 2 in appendix.

www.manaraa.com

Automatic Derivation of Agent Interaction Model 143

<role> → <roleproperties><rolevariables?><actions?><phases>
<roleproperties> → name cardinality
<phases> → <phase+>

Fig. 3. Syntactic rules of a role

3. Actions are classified into several types: appending, updating, removing,
setting and computing data. Each type has input arguments and/or one
output result, all of those being specified by their data types (listed in Table
1). There are also actions that send a message and which, obviously, take
this message as an argument. More possible actions consist in stopping a
phase or even the whole protocol. Events and message arguments can be
combined in lists. The rules describing an action are shown in Figure 4.

<action> → <actionproperties><actioncontent>
<actionproperties> → <actiontype> description
<actiontype> → append|custom|remove|send|stopphase|set|update

Fig. 4. Syntactic rules of an action

4. A message pattern is a set of the message elements that are required to
appear in a particular message being exchanged at a particular moment of
the protocol. Among those properties one will find the communicative act,
the senders, receivers, the message content type, etc. The rules describing a
message pattern are shown in Figure 5.

<messagepattern> → <messagepatternproperties>
<senders><receivers><contenttype><description?>

<messagepattern → performative currentprotocol
properties>

Fig. 5. Syntactic rules of a message pattern

Example. The representation format we choose for our model is XML. We use
a DTD derived from the EBNF rules we just gave. Let’s consider the FIPA-CNP

In this protocol, two roles are defined: the initiator and the participant.
However, for each instance of the protocol there will be one instance of the
initiator role interacting with several instances of the participant role.

In this example, three variables, namely bidlist, analysisresult and
deadline and one action, called BidsDeliberation compose the initiator. The
bids are stored in the variable bidlist. The variable analysisresult contains
the result of a bid’s analysis. Finally, the variable deadline defines when bid-
ding should stop. The action BidsDeliberation is to be executed when the

www.manaraa.com

144 J.G. Quenum, A. Slodzian, and S. Aknine

value of the bidlist variable changes, which denotes that new bids have been
received from participants. This action produces as result a change in the vari-
able analysisresult. Note that the notion of variable here is not the same as in
a programming language: it is a statement that there should be somewhere some
persistent storage where the above mentioned information is stored somehow.
<role id=”initiator” name=”Initiator”>

<rolevariables>
<variable id=”bidlist” type=”Collection” name=”bidlist”/>
<variable id=”resultvar” type=”Boolean” name=”analisysresult”/>
<variable id=”deadline” type=”Date” name=”deadline”/>

</rolevariables>
<actions>

<action type=”custom” description=”BidsDeliberation”>
<input><event type=”change” variable=”bidlist”/></input>
<output><event type=”change” variable=”resultvar”/></output>

</action>
</actions>
. . .

</role>

During the first phase, the initiator emits a cfp (call for proposal).
<phase id=”phs1”>

<actions>
<action type=”custom” description=”prepareCFP” >

<input><event type=”variablecontent” variable=”deadline”/></input>
<output><event type=”messagecontent” message=”cfp” id=”evt0”/></output>

</action>
<action type=”send”><message id=”cfp”/></action>
<action type=”stopphase”><event type=”endphase” id=”evt1”/></action>

</actions>
</phase>

After this, the initiator can receive either a refuse message, a
notunderstood message, a propose message or no message closing – which
closes the whole interaction with the concerned participant.

The description of the protocol continues with the other possible phases of
this role and should be completed with the description of the participant role.

3.2 The Agent’s Functional Model

Specifications. This functional model of an agent contains the description of
the available methods the agent may use to handle or produce information during
its interactions. In fact, we do not need that the description of a method contains
much more than the description of its arguments and a return value. Indeed, the
role of such a description is to allow for a comparison of the methods with the
actions described in the interaction models of generic protocols.

Figure 6 shows the syntactic rules of the agent’s functional model.

<agent> → <methods><datadefs>
<methods> → <method+>
<method> → <methodproperties><input?>

<output?>
<methodproperties> → name location

Fig. 6. Syntactic rules of the agent’s functionalities

www.manaraa.com

Automatic Derivation of Agent Interaction Model 145

Example. In the example below, two methods are described. The first one,
Deliberation, has a collection as input and produces a boolean value. It will
match the action called BidsDeliberation in the interaction model. The sec-
ond method, preparingCFP, takes a date as input and produces an unspecified
output. It will match the prepareCFP action of the interaction model:

<agent>
<methods>

<method id=”deliberate” name=”Deliberation”>
<input><datatype id=”collect”/></input>
<output><datatype id=”boolean”/></output>

</method>
<method id=”generatecfp” name=”PreparingCFP”>

<input><datatype id=”date”/></input>
<output><datatype id=”gobject”/></output>

</method>
</methods>...
<datadefs>

<datadef id=”informationstring” type=”InformationString”/>
...

</datadefs>
</agent>

Once the two abstract models are defined, we can match them in order to
identify similarities or to enrich the agent’s interaction model.

3.3 Matching the Two Models

This part is fundamental in our model. It matches the actions of the protocol
and the agent’s methods. Actually, only the actions having input and/or output
are matched to methods in the agent’s model. Algorithms 1 and 2 describe the
way we match action and method.

Algorithm 1 Actions - Methods Unification
Require: List L1 (List of actions in the role)
Require: List L2(List of methods in the agent’s model)
Ensure: Map m (matching hash table, key : action, value : set of methods)
Ensure: List L (List of unmatched actions)
1: for all action ∈ L1 do
2: for all method ∈ L2 do
3: if Match(action, method) = True then
4: insert (action, method) in m
5: end if
6: end for
7: if action not in m then
8: insert action in L
9: end if

10: end for

To prevent the same method from matching several actions (leading to se-
mantic inconsistencies), we first check whether the method is already paired or
not. MatchOutput compares the output combination of the action to that of the

www.manaraa.com

146 J.G. Quenum, A. Slodzian, and S. Aknine

Algorithm 2 Match Actions - Method
Require: Object action, method
Ensure: Boolean (matching result)
1: if method not yet paired then
2: if MatchInput(action, method)=True And MatchOutput(action,

method)=True then
3: Return True
4: else
5: Return False
6: end if
7: else
8: Return False
9: end if

method, returning true if they are equivalent, and false otherwise. MatchIn-
put checks if the method’s input is a valid instance of the action’s input. We
distinguish three cases:
√

Connector = “and”: there must be a total equivalence between the input
types in the method and the action. The connection is then:

Method ≡ Action

√
Connector = “or”: at least one type in the action must exist in the
method. Conversely, all the types in the method’s input must be in the
action’s input. The expected connection is then:

Method ⊆ Action

√
Connector = “xor”: all the types used in the method’s input must exist
in the action. But only one type among all the possible types in the action
must be in the method’s input. The desired connection is:

Method ⊂ Action

Some actions in the interaction model might be left unpaired, because no
methods in the agent’s functional model match them. An adaptation algorithm
(algorithm 3) is then used to generate a description of these actions as methods.
This algorithm looks for all the unmatched actions in each of the selected roles
and lists corresponding methods to complete the agent’s functional model.

Here are the results obtained by unifying the two roles of FIPA-CNP (initia-
tor and participant) and the agent’s functional model.

Figure 7 shows the global result of the unification indicating whether or not
all the actions are paired in a role.

Finally, we generate the list of unpaired actions in order to complete the
agent’s functional model. The resulting list in the case of our example comes as
follows:

www.manaraa.com

Automatic Derivation of Agent Interaction Model 147

Algorithm 3 Actions adaptation
Require: List L1 (List of unpaired operations)
Ensure: List L (List of generated methods)
1: for all operation ∈ L1 do
2: Create method
3: if Operation Input Connector = “and” Or “or” then
4: select all the input types in the operation as input type in the method
5: else
6: randomly select an input type in the operation as the type in the method input
7: end if
8: copy the combination of output types in the operation as output types in the

method.
9: end for

Fig. 7. Roles global unification

3.4 Final Compilation

The aim of the unification is to identify similarities between actions in the pro-
tocols and methods in the agent’s functional model. Once this unification com-
pletes, the unified roles are to be specialised (the generic actions will be replaced
by corresponding methods) and inserted in the agent’s interaction model. The
last step of our method is devoted to this task. Each agent will therefore hold
a specialised library of interaction protocols that it will use to participate into
interaction scenarios. In our implementation, the role will be implemented as
an ATN2. In this ATN, each event will make the role change its current state.
Actions (whether methods in the case of paired actions or special actions such
as those to send a message) related to that event will execute the corresponding
transition and make the interaction evolve correctly.

2 Augmented Transition Network

www.manaraa.com

148 J.G. Quenum, A. Slodzian, and S. Aknine

4 Conclusion

The method we propose in this paper, offers a way to build the agent’s interaction
model that will be reusable. By separating the interaction and functional models,
there can be flexible updates in the agent’s model. The possibility to design a
unification algorithm is a guarantee for consistency at runtime.

This method is now going to be applied to two non-trivial application
projects, namely Safir (www.projet-safir.org) and Princip (www.princip.net),
which both use multi-agent systems to realise sophisticated information retrieval
systems. The applicability of the method will then be proved on several tens of
interaction protocols.

In particular, we envision that the set of data types we propose might be too
limited, and that the type system should allow for inheritance in order to relax
some current operational constraints.

Since agents may have many protocols (precisely roles of these protocols)
at their disposal, the issue of protocol selection is raised. For the moment it is
solved in a rather simple way. We think that since agents dispose of an explicit
interaction model, they might be able to select automatically a protocol whether
to respond to a received message or to achieve a goal (start a protocol).

Another point we want to improve, is the ability for the agent to dynamically
configure its interaction model. In fact, the agent might need, at runtime, to ex-
ecute a protocol (as initiator or participant) that does not exist in its interaction
model yet. Then, the method we describe in this paper should be executed au-
tomatically. For this purpose, the agent (the algorithm it uses) is requested to
know about the connection between the goals to achieve or task to execute, and
the generic versions of interaction protocols the system is provided with, in order
to select a set of generic interaction protocols that could be fit.

References

1. S. Deloach and M. Wood. Developing multiagent systems with agenttool. In
Springer Verlag, editor, Proceedings of the 7th International Workshop on Agent
theories, architectures and languages, July 2001.

2. R. Depke, R. Heckel, and J. M. Küster. Formal agent oriented modeling with uml
and graph transformation. Science of Computer Programming, 2001.

3. FIPA. Fipa interaction protocol library specification. Technical report, Foundation
for Intelligent Physical Agents, 2001.

4. F. Giunchiglia, J. Mylopoulos, and A. Perini. The tropos development methology:
Processes, models and diagrams. In Proceedings of the 1st International Joint
Conference on Autonomous Agent and Multi-agents Systems, 2002.

5. J. L. Koning, G. François, and Y. Demazeau. Formalization and pre-validation for
interaction protocols in multi-agents systems. In Proceedings of the 13th European
Conference on Artificial Intelligence, 1998.

6. H. Mazouzi, A. El Fallah Seghroughni, and S. Haddad. Open protocol design for
complex interactions in multi-agent systems. In Proceedings of the First Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pages
517–526, 2002.

www.manaraa.com

Automatic Derivation of Agent Interaction Model 149

7. J. Odell, V. D. Parunak, and B. Bauer. Representing agent interaction protocols
in uml. In P. Ciancarini and M. Wooldridge, editors, Proceedings of the 1st Intera-
tional Workshop on Agent Oriented Software Engineering, volume 1957. Springer
Verlag, June 2000.

8. L. Padgham and M. Winikoff. Prometheus: A methodology for developing intel-
ligent agents. In Proceedings of the 1st International Joint Conference on Au-
tonomous Agent and Multi-agents Systems, July 2002.

9. R. G. Smith. The contract net protocol: High-level communication and control
in a distributed problem solver. IEEE Trans. On Computers, 29(12):1104–1113,
1980.

10. I. Tadashige, W. Yudji, O. Makoto, and A. Makoto. Framework for the exchange
and installation of protocols in a multi-agent system. In Proceedings of the 5th

International workshop on Cooperative Information Agents, pages 211–222, 2001.
11. J. Thomas, A. Pearce, and L. Sterling. Assembling agent oriented software engi-

neering methodologies from features. In Proceedings of the 1st International Joint
Conference on Autonomous Agent and Multi-agents Systems, 2002.

12. J. Wei, S. C. Cheung, and X. Wang. Towards a methodology for formal design and
analysis of agent interaction protocol: An investigation in electronic commerce. In
International Software Engineering Symposium, March 2001.

13. M. Wooldridge, N. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3:285–
312, 2000.

A Data Types

The types are described in Table 1.

Table 1. Data Types used in the abstract models

Data types and their significance
AcceptanceString: used when the performative is “AcceptProposal”.
AgreementString: used when the performative is “Agree”.
AllwaysRequestObject: used when the performative is “RequestWhen-
ever”.
Boolean: used when the performative is “Confirm”, “Disconfirm”,
“Query If”.
BooleanQuery: used when the performative is “Query If”.
BooleanResponse: used when the performative is “Confirm” or “Discon-
firm”.
CancelationString: used when the performative is “Cancel”.
ConstrainedRequestObject : used when the performative is “Request-
When”.
DenyString: used when the performative is “Refuse”.
ErrorString: used when the performative is “Failure”.
GenericObject : used when the performative is “Call for Proposal” or
“Propose”.
InformationObject: used when the performative is “Inform Ref”.
InformationString: used when the performative is “Inform-Done”.
NotUnderstoodString: used when the performative is “Not-Understood”.
ObjectQuery: used when the performative is “Query-Ref”.
RejectionString: used when the performative is “Reject-Proposal”.
RequestObject: used when the performative is “Request”.
SubscribeObject : used when the performative is “Subscribe”.

www.manaraa.com

150 J.G. Quenum, A. Slodzian, and S. Aknine

B Event Types

Table 2 describes the different kinds of events that can occur during an interac-
tion.

Table 2. Types of events that can occur during the interaction

Events types and their significance
Change: event happening when the content of some data has
changed.
Custom: special event occurring in the system.
Emission: event occurring when a message is sent.
Endphase: event announcing the end of a phase.
Endprotocol: event occurring to close the interaction.
Messagecontent: event indicating that the change occurring is re-
lated to a specified message.
Reception: event occurring when a message is received.
Variablecontent: event indicating that the change occurring is re-
lated to a variable.

C Action Types

Table 3 describes the actions a role can execute during an interaction.

Table 3. Types of actions that executed during the interactions

Action types and their significance
Append: action used to append data to a collection.
Custom: special action executing calculus during the interactions.
Remove: action used to remove the content of a data.
Send: action used to send a message.
Stopphase: action used to stop the running of a phase.
Set: action used to set the value of a variable.
Update: action used to update the content of a variable.

D Generic Interaction Protocol Formal Model

The formal representation of the interaction protocol is based on a set of syntactic
and semantic rules. The syntactic rules are described in table 4.

There are two semantic constraints (static semantics) on the syntactic rules
we defined. First, terminal elements eventmessage and eventvariable can refer-
ence message patterns or variables. But both of them can not be referenced
at once. To express this semantic rule, let’s define the following attributes:
content for eventcontent and ref for messagepattern and variable. Second,

www.manaraa.com

Automatic Derivation of Agent Interaction Model 151

Table 4. Abstract representation of the generic interaction protocol

terminal elements eventreference, messagetosend, variablereference, rolerefer-
ence and phasereference must reference event, messagepattern, variable, role and
phase respectively. Let’s define the following attributes: reference for eventref,
message and variableref and references for roleref. Let’s also extend the previ-
ous ref attribute to event, variable, role and phase. These two semantic rules
are described in figure 8.

if (<eventcontent>.content = eventmessage) then
∃ <messagepattern>, <messagepattern>.ref = eventmessage;
<eventcontent>.content �= eventvariable;

else if (<eventcontent>.content �= Ø) then
∃ <variable>, <variable>.ref = eventvariable;
<eventcontent>.content �= eventmessage;

end if
1: ∀ <eventref>.reference, ∃ <event>,

<event>.ref = <eventref>.reference;
2: ∀ <message>.reference, ∃ <messagepattern>,

<messagepattern>.ref = <message>.reference;
3: ∀ <variableref>.reference, ∃ <variable>,

<variable>.ref = <variableref>.reference;
4: ∀ {<roleref>.references}, ∃ <role> and <phase>,

<role>.ref ∈ {<roleref>.references} and
<phase>.ref ∈ {<roleref>.references};

Fig. 8. Semantic rules on generic interaction protocols

www.manaraa.com

152 J.G. Quenum, A. Slodzian, and S. Aknine

E The Functional Model

The agent’s functional model is also described by the means of syntactic and
semantic rules. The syntactic rules are described in Table 5. Here again, we
distinguish two semantic rules. The first rule demands the terminal element
concernedtype to belong to the set of types declared in datadef. The second rule
stipulates that a method can not lack at the same time the input, and output
elements. Figure 9 describes these rules.

∀ <datatype>.reference, ∃ l ∈ {<datadef>.litterals},
<datatype>.reference = l
∀ <method>, <method>.input �= Ø or <method>.output �= Ø;

Fig. 9. Semantic rules for the agent functional model

Table 5. Abstract representation of the functional model

<agent> → <methods><datadefs>
<methods> → <method+>
<method> → <methodproperties><input?><output?>
<methodproperties> → name location
<input> → <datatype+>
<output> → <datatype>|<list>
<list> → <listtype><datatype+><list*>
<listtype> → and|or|xor
<datatype> → concernedtype
<datadefs> → <datadef+>
<datadef> → AcceptanceString|AgreementString see Table1

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 153–166, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Building Blocks for Agent Design

Hrishikesh J. Goradia and José M. Vidal

Swearingen Engineering Center
University of South Carolina

Columbia, SC 29208
goradia@engr.sc.edu

vidal@sc.edu
http://jmvidal.ece.sc.edu

Abstract. We present our Component-Based Agent Framework, which enables
a software engineer to design a set of agents by using a visual component-based
toolkit (Sun’s BDK), and wiring together desired blocks of functionality. We
instantiate this framework in the RoboCup domain by implementing the neces-
sary components. The implementation also serves as a proof of the viability of
our framework. Finally, we use this implementation to build sample agents. The
proposed framework is a first step towards the merging of agent-based and
component-based design tools.

1 Introduction

As the Semantic Web [6] and Web services become increasingly ubiquitous we can
expect to see an increasing need for agents that can exploit these resources [9]. While
some of the agents will be highly complex, we expect that most of them will be sim-
ple agents of limited abilities, short lifespan, and built in order to solve temporary
problems. Software engineers that have to build these agents will, therefore, want
methods that allow them to very quickly develop agents that have the desired capa-
bilities. They will not want to spend time learning to use complex agent architectures
in order to build an agent that might only be used a dozen times. They will instead
prefer to use the tools that they have grown used to, such as visual component-based
development systems.

In this paper, we present our Component-Based Agent Framework (CBAF) along
with SoccerBeans—an example application of this framework for the RoboCup [13]
domain. CBAF builds on our previous work on an agent architecture for RoboCup [5,
14] by integrating parts of the architecture with the Java Beans component model.
The framework is our first step towards the merging of agent-based and component-
based design methodologies and tools. Once our framework is instantiated for a par-
ticular domain, the resulting system allows the user to build agents using a visual
component-based development program (BDK). In this way, the user does not need to
think about the domain-independent aspects of building an agent and can instead
focus solely on the domain-dependent aspects.

www.manaraa.com

154 H.J. Goradia and J.M. Vidal

2 The Component-Based Agent Framework Specifications

Despite the recent advances in the quality and the available features in current agent
frameworks, designing agent-based systems remains difficult. Both the rigid design
specifications of the framework and the necessity to understand the framework’s
implementation details have restricted the usability of current frameworks for de-
signing multiagent systems. The CBAF specifications enable a software engineer to
design multiagent systems by simply wiring together the desired blocks of functional-
ity for each agent from a pool of available components, thereby circumventing the
above-mentioned problems. The frameworks based on the CBAF specifications are
simple, generic, and flexible, imposing minimal restrictions and providing a plethora
of options for designing agents that will participate in a multiagent system.

The CBAF architecture is a component-oriented approach for designing agent sys-
tems. CBAF defines the specifications for a designer to create an agent framework
comprising a set of components that can be utilized by the user to develop sophisti-
cated agent behaviors and associate the behaviors with individual agents. Most of the
current agent frameworks implement a specific agent system, and a user of these
systems is expected to download the provided software and build his agents as exten-
sions to the system. The CBAF approach differs from such frameworks in that it adds
a layer of abstraction between the agent system implementation layer and the devel-
opment environment. The developed agent system will be domain-specific, but by
adding this restriction the learning curve for the user, before he can start building
applications using the system, becomes virtually non-existent. Figure 1 compares
CBAF with other current frameworks. CBAF does not provide any software libraries
for agent applications, just a set of rules to be followed by the designer while devel-
oping agent systems that can be used by the user for creating agent applications. We
show the usage, benefits, and applicability of the CBAF specifications by presenting
an implementation of a soccer simulation system based on the CBAF architecture.

Fig. 1. Comparison of agent frameworks

2.1 CBAF Specifications

The CBAF specifications defining the necessary environment settings and the rules of
agent system design to be followed by the designer and the user of the system are as
follows:

www.manaraa.com

Building Blocks for Agent Design 155

• CBAF assumes a discrete, stochastic and episodic environment that can also be
dynamic and partially observable with real-time requirements. Also, the set of
actions that an agent can take must be bounded.

• CBAF is a component-oriented approach. The development environment selected
for designing the agent system must support event-driven programming.

• The agent framework based on the CBAF architecture must be designed as a set
of independent, self-contained, highly specialized components. A user must be
able to combine the components in various forms to create different plans or ac-
tivities for the agent. These activities will be associated to the individual agents.

• The agent framework must include the following types of components:

 Agent component(s):
The agent component represents an individual agent in the multiagent system.
The component must be able to represent the internal states of the agent and the
external states of the surrounding environment. The agent component must also
receive sensor input from the environment and produce action output to the envi-
ronment. The agent will be associated with one or more activity components rep-
resenting the plans for the agent at design time. The scheduling mechanism for
these activities and the internal control flow for the agent must be decided by the
agent component. All variations of the above mentioned mechanisms must be
represented as separate agent components in the framework.

 Activity component(s):
The activity component is an interface between an agent component and the user-
defined activities or plans for the agent. The activity component must fully sup-
port the activity scheduling and agent communication mechanisms of the agent
component. The activity component must also allow the creation of plans in-
volving complex, decision-making routines. A plan must be rooted by an activity
component and generated as a concatenation of rules based on the agent’s inter-
nal state. The rules can have a positive or a negative classification. For each clas-
sification, a new set of rules can be appended. This mechanism produces a data
structure like a decision tree. Each branch of the tree structure must be terminated
by an action to be performed by the agent when all the rules defined in the path
are satisfied. The activity component must be able to solve the plan by propagat-
ing events through the plan. The agent framework can have one or more activity
components satisfying all the above criteria.

 Decision components:
The decision components represent the rules used in plan generation for an agent.
The rules can be defied as individual decision components or as a collection of
the components chained together in some order. The framework must include all
the decision components, so that the user is able to devise any rule that he wants
to use in his plan.

 Behavior components:
The behavior components represent the agent’s actions. Each rule set in a plan
has to be mapped to a behavior component. The framework must provide every
possible atomic action for an agent in the system as a behavior bean.

Figure 2 describes a sample CBAF architecture for the RoboCup domain.

www.manaraa.com

156 H.J. Goradia and J.M. Vidal

Fig. 2. The CBAF architecture. The sample behavior and decision components are shown for
the RoboCup domain

2.2 Challenges for CBAF Design

Some of the issues that need to be addressed for designing the framework described
above are:

• Which are the best behavior and decision components to provide to achieve the
desired goals?

• The components have to be functionally independent, but they also rely on each
other for accomplishing their tasks and hence should be interactive and cohesive.
How do we achieve that?

www.manaraa.com

Building Blocks for Agent Design 157

• How should the components be combined to create new components?

• How do we deploy the whole system with multiple agents?

2.3 CBAF Implementation with JavaBeans

The JavaBeans technology [11] by Sun Microsystems seems to be the most suitable
development environment for creating agent systems using CBAF. Java supports the
delegation event model for event handling, where an event source generates an event
and sends it to a set of event listeners. The listeners must be registered with the source
to receive notifications about specific event types. JavaBeans leverages the strengths
of Java by providing a rich framework for manipulating events and the relationships
between event sources and event listeners at design time. The Bean Development Kit
(BDK) provided by Sun Microsystems for application development using beans pres-
ents a simple way of associating two beans with each other. Linking can be done by
simply selecting the method that fires a particular event in the source bean and fol-
lowing it up with selecting the method that needs to be invoked on the listener bean
each time that event is fired by the source. The BDK automatically creates the
Adapter [7] class for combining the source bean with the listener. Above all, the in-
trospection and reflection mechanisms supported by Java and extended by JavaBeans
open up a plethora of options for aiding complex decision-making by the agents. This
paves the way for enabling the creation of a diverse set of applications using the sys-
tem toolkit. Finally, with JavaBeans, the agent properties can be modified at run-time.
This feature can be extremely useful while testing out different strategies for individ-
ual agents.

Among the currently available technologies, only JavaBeans provides all of the
above-mentioned features. While other development environments like Visual Studio
with Visual Basic or Visual C++ can also be used for developing components as
DLLs (Dynamic Linked Libraries), they have limitations that add to the complexity of
the task of agent system development. While these environments support event han-
dling, combining the event source with the event listener is non-trivial. The Adapter
class invoking the appropriate method in the listener component for each event gener-
ated by the source component has to be hand-coded. A similar case can also be pre-
sented for other distributed computing technologies like CORBA and COM. Since the
above-mentioned technologies do not support introspection and reflection, the com-
ponents will be highly specialized and inflexible. Hence, these technologies would
need a much higher number of components to support complex decision-making than
JavaBeans. Run-time modifications to agent properties would also be unavailable.

3 The SoccerBeans Framework

SoccerBeans is an implementation of the CBAF specifications for the RoboCup do-
main. The RoboCup domain is the world of simulated robotic soccer. The Soccer-
Beans agent system facilitates the creation of different soccer teams with minimal
effort on the user’s part. SoccerBeans is intended to be used as a pedagogical tool to
instigate research in multiagent systems. RoboCup proves to be an excellent test-bed
for study and research in multiagent systems’ design as it presents a complex, distrib-

www.manaraa.com

158 H.J. Goradia and J.M. Vidal

uted, real-time, noisy, collaborative, and adversarial environment for extensive re-
search in agent based systems.

The RoboCup simulation system design is based on the client-server architecture.
The soccer server provides a virtual field and simulates all movements of a ball and
players, and controls a game according to rules. The multiagent system of soccer
players forms the client side. Each client controls the movements of one player.
Communication between the server and each client is done via UDP/IP sockets.

The SoccerBeans system consists of a pool of functional components developed as
JavaBeans (referred to from hereon as just beans). The PlayerFoundation bean is a
highly specialized agent component that represents an individual player in the multi-
agent system. The bean handles all the communication, knowledge representation,
and activity scheduling aspects of the represented player. The Activity bean is the
CBAF activity component that glues together the PlayerFoundation bean with the
different player activities designed from the various decision and behavior beans
provided in the system. Eight decision and behavior beans have been developed so far
and work is in progress for developing additional beans to further extend the capabili-
ties of the system. As will be shown later in this section, even with such a limited set
of components, the CBAF implementation using JavaBeans can support substantially
complex decision-making activities.

3.1 PlayerFoundation Bean

The PlayerFoundation bean encapsulates all the low level details of the agent and
allows the user to concentrate on the real issues of planning and coordination. The
DatagramWrapper class handles the task of communicating with the soccer server.
The player and server configuration information is static and is preserved in the Con-
figurationData class of the bean. The dynamic information about the surrounding
environment received from the server at every simulation step is preserved in the
player’s WorldModel. The bean has a reference to the RobocupUtilities class,
which is a library of utility functions defining the various actions a player can take.
The activity scheduling mechanism of the PlayerFoundation bean supports both
the BDI and the Subsumption architectures. The design of the PlayerFoundation
bean is very closely based on the Biter platform [5]. (Please refer to the paper on Biter
for further information about the above mentioned classes in the PlayerFoundation
bean.)

The PlayerFoundationBeanInfo class exposes many properties of the
PlayerFoundation bean. These properties differentiate the players from each other
and can be manipulated by the user at design time and, if required, also at run time.
The name and team properties define the player’s name and team. A value for
playerNumber is assigned to the player by the server when the initial connection is
established. The player’s starting position before kickoff and after every goal can be
set by the initialLocation property. Age defines the number of cycles for which
the ghost of a dynamic object is preserved in the world model. The display property
pops up a new window that graphically displays the player’s world model. This can
be very useful while debugging. If the debugFileName is not empty, then the
PlayerFoundation bean spits out the debug information into that file. The file
defining the player and server configuration information must be entered in the con-

www.manaraa.com

Building Blocks for Agent Design 159

figFileName field. Hostname and portNumber for the soccer server must be de-
fined in the corresponding fields for the bean. The version information is used in
establishing the initial connection with the server. This value must be set to 5.00 for
the SoccerBeans system. If the player is a goalie, then the goalie property must be
set to true. The player must be set online only after all the other properties are de-
fined and all the activities are added to it. This initiates the socket connection between
the server and the player.

As defined by the PlayerFoundationBeanInfo, the PlayerFoundation bean
acts as an event source for the ActivityEvent events. The bean provides methods
for adding and removing the listeners. The ActivityEvent events are fired to pass
references of the source bean and the current input to the listeners. The Activity
beans are the recipients of these event notifications in the SoccerBeans system. While
firing these events, the PlayerFoundation bean can invoke either of the addAc-
tivity, canHandle or handle methods on the listener bean. The addActivity
method is invoked on an activity at the instant when the activity is registered with the
player at design time. The references of both the activity and the player are exchanged
at that instant. The canHandle method determines if the concerned activity can han-
dle the current input to the player. As part of the PlayerFoundation bean’s activity
scheduling mechanism, the canHandle method is invoked for all registered activities
at every instant when a new input is received by the player from the server. The han-
dle method then executes the concerned activity. Exactly one matching, uninhibited
activity is selected for execution at each simulation step.

The PlayerFoundation bean is not a recipient of any event notification and
hence does not expose any methods for invocation.

3.2 Activity Bean

The design of every new plan or activity for an agent begins with the Activity bean.
The activities are generated as sets of rules with each branch of the resulting decision
tree terminated by an action to be performed by the agent. Thus, if a particular set of
rules defined in a path are valid for a player and its surrounding environment then the
player performs the action defined at the end of that path. The rules are designed by
combining the various decision beans, while the actions performed are defined by the
behavior beans. The root of each such path is an Activity bean.

The ActivityBeanInfo class exposes two properties for the Activity bean,
the name of the activity, and the inhibits property. The list of other activities that
are subsumed by this activity must be declared in the inhibits property. The activi-
ties must be referred to by their name, and delimited by commas.

As defined in the CBAF specifications, the Activity bean acts as glue for associ-
ating a player to one of its activities. The bean is an ActionEvent event listener and
implements the addActivity, canHandle and handle methods declared in the
ActivityListener interface. These methods are exposed for invocation by the
PlayerFoundation beans through the ActivityBeanInfo class. Each activity
comprises two decision trees. The tree associated with the canHandleListener in
the Activity bean determines if the current environment settings are favorable for
performing the activity. The other tree is associated with the handleListener in the

www.manaraa.com

160 H.J. Goradia and J.M. Vidal

Activity bean and defines how the activity must be executed. The first tree is
solved by the canHandle method, while the second tree is executed by the handle
method.

The decision trees in the Activity bean comprise some decision and behavior
beans linked with each other in some sequence. For both canHandle and handle,
the Activity bean provides add and remove methods for decision and behavior
beans. The ActivityBeanInfo class exposes these methods. The structure of both the
methods for solving the trees is identical. A FunctionalityEvent event defining
the current state of the world is fired from the method and the notification is sent to
the decision or behavior bean adjacent to the Activity bean in the chain. Both De-
cisionListener and BehaviorListener interfaces listen to Functional-
ityEvent events and are implemented by the decision beans and the behavior beans
respectively. If the next bean in the chain is a decision bean, the Activity bean
invokes the decide method on the decision bean. If it is a behavior bean, then the
behave method is invoked. The notification is propagated further in the appropriate
path by the decision beans until it hits the behavior bean where it is terminated. For
canHandle, the behavior bean sets the canHandle flag in the Activity bean either
directly or via an intermediate decision bean. This determines whether the activity can
be performed in the current cycle with the given environment. If the activity is appli-
cable then, as part of the SoccerBeans system’s scheduling mechanism, all other ac-
tivities applicable for the current cycle that are inhibited by this activity are elimi-
nated. The activity that is handled for the current cycle is selected from this new list
of applicable plans. For handle, the behavior bean typically sends a message to the
soccer server describing the player’s action for the current cycle.

3.3 Decision Beans

As described in the CBAF specifications, the decision beans enable a user to define
rules for generating plans. Every possible condition that the user might need to check
for making his/her decision must be encompassed by the published set of decision
beans in the framework. The user must be able to define any rule by using either a
single decision bean or combining a collection of them in some form. Plans are gener-
ated by chaining such rules with an Activity bean at the head and a behavior bean
at the tail.

For every path in a plan, a decision bean is preceded by either an Activity bean
or another decision bean, and is followed by a behavior bean or another decision
bean. Whenever a decision has to be made, a message has to be propagated through a
chain from the Activity bean towards the behavior bean via the intermediate deci-
sion beans. This is achieved in SoccerBeans by sending FunctionalityEvent
event notifications through the chain. The event object provides the listener with a
picture of the agent’s current internal state. Every decision bean implements the De-
cisionListener interface for listening to the FunctionalityEvent event notifi-
cations. The decide method for each decision bean performs the necessary computa-
tion and sets the decision flag appropriately. The path to be pursued is selected
based on the value of the flag, and the event notification is propagated further in that
path.

www.manaraa.com

Building Blocks for Agent Design 161

As discussed above, a decision bean can be linked to either another decision bean
or a behavior bean. Also, two different chains of beans will be connected to the deci-
sion bean, one for each possible value of the decision flag. For both chains, a deci-
sion bean provides add and remove listener methods for connecting to both types of
beans.

The following decision beans have been developed for the SoccerBeans system to
date:

3.3.1 DInputType Bean
The input received from the soccer server is represented as SensorInput, while the
action event generated by the PlayerFoundation bean to elicit an action for the
current cycle is represented as Event input in the SoccerBeans system. The DInput-
Type decision bean can be used to classify player behaviors based on the type of
input propagated by the FunctionalityEvent. The DInputTypeBeanInfo class
exposes the inputType property of the DInputType bean. The valid entries for the
property are SensorInput and Event.

3.3.2 DClosePlayers Bean
The DClosePlayers bean can be used to create rules based on the number of other
players within some distance to the player represented by the PlayerFoundation
bean. The players considered can be from either team or irrespective of the team. A
user can also set the considered distance and the number of players considered at
design time. The DClosePlayersBeanInfo class exposes the properties team-
Name, distance and number for the above functions. The DClosePlayers bean
executes the playersInCone method defined in the RobocupUtilities class to
determine the result. The decision flag is set to true if the number of players
counted is less than the value of the number property, else it is set to false.

3.3.3 DBallDistance Bean
The DBallDistance bean can be used for classifications based on the distance of the
ball from the player. The DBallDistanceBeanInfo class exposes the DBallDis-
tance’s distance property, which allows a user to specify the threshold distance.
The actual distance is determined from the player’s world model. The decision flag
is set to true if the determined distance is less than the value of the distance property,
else it is set to false.

3.3.4 DIfThenElse Bean
The DIfThenElse bean is defined for classification based on a rule for which there is
no explicitly defined decision bean. The DIfThenElse bean can be linked to any
behavior bean or a chain of decision beans terminated by a behavior bean for defining
the rule. The DIfThenElse bean passes the FunctionalityEvent event notifica-
tion to the linked bean for determining the decision. The terminating behavior bean
must set the decision flag of the DIfThenElse bean to true or false. The DIfT-
henElseBeanInfo class provides an additional set of add and remove listener meth-
ods for the new chain.

www.manaraa.com

162 H.J. Goradia and J.M. Vidal

3.4 Behavior Beans

As described in the previous sections, plans are generated as sets of rules, with each
branch of the resulting tree structure terminated by an action to be performed by the
agent. These actions are defined as behavior beans. The actions typically include
setting a particular property of some object or executing a particular method for some
object. The agent framework must comprise all the behavior beans such that a user is
provided with the opportunity to perform any action deemed suitable for his/her plan.
The behavior beans are preceded by either an Activity bean or a decision bean.
Whenever a decision is to be made in SoccerBeans, a behavior bean receives a Func-
tionalityEvent event notification from the preceding bean. Every behavior bean is
defined as a listener of these events by implementing the BehaviorListener inter-
face. The behave method for each behavior bean performs the specified action for
the bean.
The following behavior beans have been developed for the SoccerBeans system to
date:

3.4.1 BBoolean Bean
The BBoolean bean can be used for setting a particular boolean property of an object
to the specified value. The BBooleanBeanInfo class exposes the className,
propertyName and value fields of the BBoolean bean. These fields can be used to
specify the property that needs to be modified with its new value and the class defin-
ing the property. The bean uses Java’s Reflection API to locate the set method for the
property in the specified object and invokes the method, passing the specified value as
the parameter. Thus, any boolean variable in the system can be modified at run time
by using this bean.

3.4.2 BIncorporateObservation Bean
The BIncorporateObservation bean is meant for receiving the sensor inputs from
the soccer server and incorporating them into the player’s world model. There is no
property in the bean for a user to modify and the BIncorporateObservation-
BeanInfo class is defined accordingly.

3.4.3 BDribbleBallToPoint Bean
The BDribbleBallToPoint bean allows the player to dribble the ball to the speci-
fied point on the field. A user can specify the point at design time through the final-
Position property. This feature can be useful for testing purposes, but has limited
applicability at run time as the desired final position for the ball in the soccer game
will almost always vary at different points in time. The user would rather like to exe-
cute some method for computing the desired final position for the ball at a given time.
The BDribbleBallToPoint bean provides this option by presenting other fields to
the user at design time. The BDribbleBallToPointBeanInfo class also exposes
the method, className, methodName and methodParams properties of the

www.manaraa.com

Building Blocks for Agent Design 163

bean. The className, methodName and methodParams properties can be used to
specify the appropriate method with parameters that should be executed for comput-
ing the desired final position of the ball. The method is invoked at runtime using the
Reflection API. The method flag is used to determine whether the ball’s final posi-
tion must be computed by executing the specified method or by considering the value
of the finalPosition field. The bean executes the dribbleBallToPoint method
defined in the RobocupUtilities class, passing the desired final position value as
the parameter.

3.4.4 BShootBallToPoint Bean
The BShootBallToPoint bean is similar to the BDribbleBallToPoint bean
except that the latter dribbles the ball, while the former kicks it with maximum force.
The BShootBallToPointBeanInfo class provides similar options to the user as the
BDribbleBallToPointBeanInfo class. This bean executes the shootBallTo-
Point method in the RobocupUtilities class.

4 Testing and Results

Using the developed components in SoccerBeans, we designed a basic soccer agent
that was capable of dribbling a ball to its goal. The agent could also shoot the ball to a
desired point in the soccer field if other players surrounded it. Figure 3 shows the
agent design on the BDK.
The agent can perform three activities: observe, dribble and shoot. These are
ordered from top to bottom in Figure 3. For every cycle in the agent’s scheduling
mechanism, if the player has received a new sensor input from the soccer server, then
the BDI part of the mechanism selects the observe activity for execution. For action
event inputs, the dribble and shoot activities are selected. The dribble activity is
eligible for all action event inputs, while the shoot activity is eligible only for cases
where other players are closing in on the agent. The subsumption part of the schedul-
ing mechanism breaks the tie for such cases. The shoot activity always inhibits the
dribble activity in the agent design.
The soccer game was played between two teams consisting of a single player, each
designed as shown in the above figure. Successful experiments were conducted also
for teams with a couple of players each, where the shoot activity was set to fire if any
opponent approached the agent. Work is in progress for developing more components
in SoccerBeans to enable the players to make non-trivial decisions for advanced
communication and coordination.

www.manaraa.com

164 H.J. Goradia and J.M. Vidal

Fig. 3. Agent design using SoccerBeans. The red lines showing the connections between the
components were added externally to the actual screenshot.

5 Related Work

Over the years, researchers have developed many agent frameworks for creating mul-
tiagent systems. Some of the frameworks like JADE [2] and ZEUS [12] are domain-
independent, but they restrict their users to designing agents and agent systems in a
specific way. A user needs to learn the architecture of these tools before being pro-
ductive, which is not a trivial task considering the complexity of these frameworks.
The main objective of our work is to enable the user to design agent systems using
CBAF-compliant frameworks with minimal learning. SoccerBeans builds on our
previous work on Biter, an agent architecture for RoboCup. Biter implements a client
for the RoboCup simulator, providing the basic functionality to design RoboCup
teams. Some of its features include a world model with absolute coordinates, a
graphical debugging tool, a set of utility functions, and a generic agent architecture
supporting both reactive (subsumption) [4] and practical reasoning (BDI) [8] re-
sponses for scheduling activities. SoccerBeans inherits all of the above features from
Biter, and extends the architecture by integrating it with a component-based architec-
ture – JavaBeans. The University of Massachusetts’s JAF [10] project develops an
agent framework using the JavaBeans technology. The JAF framework also provides
components for designing disparate agents, but it is very restrictive in its methods for
designing agents. In addition, the JAF system works only with the Multi Agent Sur-
vivability Simulator, a special test bed developed at the University of Massachusetts.

www.manaraa.com

Building Blocks for Agent Design 165

6 Conclusions and Future Work

We have introduced our CBAF specifications for developing agent frameworks, along
with SoccerBeans—an implementation of CBAF for the RoboCup domain. The
CBAF-compliant frameworks are unique in that there is virtually no learning curve
for their users before they can start developing multiagent systems using the frame-
work. In addition, the integration of the agent architecture with a component-based
architecture like JavaBeans reduces the task of creating agents to that of visually
linking the agents to its activities. These activities are also created by visually linking
the necessary blocks of functionality from a pool of available components. Our sys-
tem allows the user to quickly design and deploy his agents without worrying about
the underlying architecture. CBAF seems ideal for research on applications such as
trading-agent systems and resource allocation problems where there is a need for
many agents with only slightly different functionality. We have demonstrated the ease
and the usefulness of CBAF specifications with our SoccerBeans implementation for
the simulated soccer application. We intend to complete the SoccerBeans framework
in the future by developing additional components to add versatility to the available
features for agent design. Finally, we view our system as a prototype for future agent-
development environments that will merge the best techniques from agent-based
software engineering and component-based design.

References

1. Biter: A robocup client.: http://jmvidal.cse.sc.edu/biter/.
2. Bellifemine, F., Poggi, A., and Rimassa, G.: Developing multi-agent systems with JADE.

In: Proceedings of the Seventh International Workshop on Agent Theories, Architectures,
and Languages, 2000.

3. Booch, G., Rumbaugh, J., and Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

4. Brookes, R.A.: Intelligence without representation. Artificial Intelligence, 47:139–159,
1991.

5. Buhler, P., Vidal, J.M.: Biter: A Platform for the Teaching and Research of Multiagent
Systems’ Design using Robocup. In: RoboCup 2001: Robot Soccer World Cup
V.LNCS/LNAI Lecture Notes Volume 2377. Springer Verlag, Berlin Heidelberg New
York (2002).

6. Berners-Lee, T.,Hendler, J., and Lasilla, O.: The Semantic Web. Scientific American,
2001.

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

8. Georgeff, M., Pell, B., Pollack, M., Tambe, M., and Wooldridge, M.: The Belief-Desire-
Intention model of agency. In: Proceedings of Agents, Theories, Architectures, and Lan-
guages, 1999.

9. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems, (16)2, 2001.
10. Horling, B.: A Reusable Component Architecture for Agent Construction. In: University

of Massachusetts/Amherst CMPSCI Technical Report 1998-49. October, 1998.
11. JavaBeans: The Only Component Architecture for Java Technology.

http://java.sun.com/products/javabeans/
12. Nwana, H., Ndumu, D., Lee, L., and Collins, J.: ZEUS: A tool-kit for building distributed

multi-agent systems. Applied Artificial Intelligence Journal, 13(1): 129–186, 1999.

www.manaraa.com

166 H.J. Goradia and J.M. Vidal

13. Soccer Server System.: http://sserver.sourceforge.net/
14. Vidal, J.M., Buhler, P.: Teaching Multiagent Systems using RoboCup and Biter. The

Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, (4)2, 2002.

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 167–181, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Supporting FIPA Interoperability for Legacy
Multi-agent Systems

Christos Georgousopoulos1, Omer F. Rana1, and Anthony Karageorgos2

1 School of Computer Science, Cardiff University, P.O.Box 916,
Cardiff CF24 3XF, UK

{geolos,o.f.rana}@cs.cf.ac.uk
http://www.cs.cf.ac.uk/Digital-Library/

2 Department of Computation, UMIST, Manchester, M60 1QD, UK
karageorgos@co.umist.ac.uk

Abstract. The conversion of a Multi-Agent System (MAS) into a FIPA-
compliant system (i.e. one that adheres to FIPA standards) is important to
support interoperability across different MAS. We provide an approach to
undertaking such a conversion using FIPA-compliant gateways [7]. This
approach avoids the need to re-write the entire legacy system to adhere to FIPA
specifications. We propose an architecture for FIPA-compliant gateways that
could be connected to a legacy MAS to provide automated FIPA
interoperability. The use of the gateways is demonstrated within a Digital
Library composed of multi-spectral images of the Earth, as part of the Synthetic
Aperture Radar Atlas (SARA).

1 Introduction

The conversion of a Multi-Agent System (MAS) into a FIPA-compliant system (i.e. a
system that adheres to FIPA standards) implies that system developers must rebuild
their systems based on FIPA specifications. Such a conversion imposes amendments
on the system architecture to conform to the new standards, which may results in
extensive code rewriting and testing. This is often one of the limiting factors in
promoting usage of FIPA standards.

We extend our previous work on the FIPA-compliant gateways [7], and describe
an architecture of FIPA-compliant gateways that could be connected to a legacy MAS
to provide automated FIPA interoperability. By the term automated it is meant that a
developer would not need to have any knowledge of the FIPA specifications in order
to make their system FIPA-compliant. For this purpose, a special GatewayAgent API
[19] written in Java has been created to facilitate the realization of the FIPA-
compliant gateways. Although, the proposed architecture of the generic FIPA-
compliant gateways supports a limited number of performatives, a developer would
be able to extend the gateway agent Java class in order to support any performative
that it is not initially supported by the generic architecture.

Note that our approach should not be confused with agent software integration
support for FIPA specifications, or with similar approaches that claim FIPA

www.manaraa.com

168 C. Georgousopoulos, O.F. Rana, and A. Karageorgos

compliance but actually alter[12] the original FIPA specifications. We briefly discuss
the advantages and limitations of adopting our approach, and demonstrate how
interoperability can be achieved with particular emphasis to the SARA (Synthetic
Aperture Radar Atlas) system [15].

Although we are aware that standards are unlikely to remain static over time, FIPA
provides the most valuable agent interoperability specification at the present time.
Our approach is therefore focused on supporting interaction between agent systems
that adhere to this standard.

2 Building FIPA-Compliant Gateways

Based on the guidelines provided by the FIPA association, for an agent platform
implementation to be considered FIPA-compliant it must at least implement the
“Agent Management” and “Agent Communication Language” specifications, which
should conform to the latest experimental and/or standard status specifications.

The usual approach to conforming a MAS into a FIPA-compliant one is to modify
the whole system based on FIPA specifications. A different approach that has so far
been ignored is to adapt the architecture partially, and avoid an extensive re-write.
Figure 1(a) represents a typical multi-agent system (MAS 1) that has been conformed
to FIPA specifications in order to be able to interoperate i.e. receive/send data from/to
other FIPA-compliant multi-agent systems (EXternal MAS). Figure 1(b) represents
our approach to conforming a MAS into a FIPA-compliant one. The actual
architecture of the system remains the same as before, but two FIPA-compliant
gateways (in grey) have to be added to the system. These work as adaptors
(wrappers) to ensure interoperability with other FIPA-compliant external multi-agent
systems (EX MAS). Interoperability in this sense applies at both the communication
and application levels. The communication level comprises the connection and
communication layer, whereas the application level comprises the ontological and
agent service layer [4].

The two gateways are the FIPA-compliant part of the system. Each of these has all
of the mandatory, normative components of the FIPA architecture. The use of these
FIPA-compliant gateways is illustrated in figure 5 of section 4.2 – where the adoption
of the FIPA-compliant gateways in the SARA system is demonstrated. Each gateway
contains three agents: the Agent Management System (AMS), the Directory
Facilitator (DF) and the gateway agent. The AMS and DF are the FIPA agents, as
defined by FIPA specifications. The gateway agent is the only agent of the system
registered by both AMS and DF, and acts as a wrapper between MAS2 and any
external MAS. All the available services of the system are represented by this agent.
It is similar to a FIPA compliant system with only one registered agent capable of
providing services. The Directory Facilitator (DF) and Agent Communication
Channel (ACC), support the required infrastructure for enabling service
interoperability, and are part of the

www.manaraa.com

Supporting FIPA Interoperability for Legacy Multi-agent Systems 169

Fig. 1. Two different approaches of conforming an agent platform into a FIPA-compliant one

FIPA specifications. The communication between an EX MAS and MAS2 is
accomplished though the Agent Communication Channel (ACC) and the protocols
that are supported are reflected through the platform address. The gateway agent
communicates with agents from EX MAS using the FIPA Agent Communication
Language (ACL). Its responsibility is to translate the incoming messages to a form
understood by its internal agents i.e. the agents that are hidden by the EX MAS.
Likewise, the internal agents’ requests have to be also converted by the gateway agent
into ACL messages, in order to be understood by an EX MAS. The gateway agent
maintains a list of the agents within the system being wrapped, along with the
registered services (with DF) that each of them can provide. Therefore, based on the
service requested by an EX MAS, the gateway agent knows to which system agent the
message should be forwarded, after it has been translated into the form understood by
the appropriate agent that receives the request.

Hence, the external MAS does not see anything else apart from the gateway agent;
which on receiving a request from an external MAS (on the left side of MAS2) is
responsible for transferring the request to the agents of its system, which are hidden
by the external MAS, for processing the request. Once the request is accomplished, a
response is returned to the external MAS through the gateway agent. In the case
where agents from MAS 2 need to communicate with an external MAS (on the right
side of MAS2), their request is passed through the gateway agent and translated into
ACL; the results gathered by the external MAS are returned to MAS 2 agents through
the gateway agent as well.

The gateway agent also supports agent conversation sessions by supplying the
conversation ID (of its communication with the external agent) to its appropriate
internal agent along with the translated message. Once, it receives feedback from one
of its internal agents, it replies to the corresponding external agent on the conversation
indicated by the conversation ID received by the former one i.e. the conversation ID
that the gateway agent had initially sent to its internal agent.

2.1 Supporting Multiple Gateway Agents

Although one of the advantages of the FIPA-compliant gateway is to isolate the
externally accessible part of the architecture i.e. the gateways, from the rest of the

E X MAS

EX MAS

MAS 1

MAS 2

FIPA compliant

non-FIPA compli antDF

(a)

(b)
AM S

gateway
agent

EX MAS

EX MA S

F
IP

A
 g

at
e

w
ay

F
IP

A
 g

a
te

w
a

y

DF

AMS

gateway
agent

www.manaraa.com

170 C. Georgousopoulos, O.F. Rana, and A. Karageorgos

system for increasing security (since the policy of the architecture remains hidden to a
foreign Agency), some developers might need to expose more than one agents to an
external MAS.

This could be achieved by adding multiple gateway agents to the FIPA-compliant
gateway that provides interoperability between the legacy MAS and an external one,
as shown in figure 2a. In this case, the agent that would need to be directly accessed
by an external MAS, and could be represented by a separate gateway agent. For
instance, with reference to figure 2, agent1 with service1 is resented by gateway
agent1 (GA), service2 of agent2 by GA2 and service3/4 & 5 by GA3.

Even in the case where all of the available services provided by a legacy MAS are
represented by a single gateway agent, the introduction of multiple gateway agents
with replicated services in the FIPA-compliant gateway may also be useful for:
− Balancing the incoming requests among the existing gateway agents. In a MAS

with numerous received requests, the gateway agent that receives a request from an
EX MAS may pass the request to another (less occupied) gateway agent. For
instance, the steps that have to be followed in order for a message to be passed
from one gateway agent to another one, see figure 2b, are:
Step 1: An agent from an EX MAS sends a request to GA1.
Step 2: If the message is not understood by GA1, it replies to the sender agent

with a
 Not-understood message, otherwise it sends an Agree message

including the
 parameter reply-to with the gateway agent’s name to which the

message is
 forwarded i.e. GA2. Therefore, subsequent messages (from the external

agent)
 will be directed to GA2.
Step 3: GA1 forwards the external agent’s message to GA2 via an Inform

message
 including the parameter reply-to with the external agent’s name.
Step 4: GA2 communicates with its appropriate internal agent according to the

service
 required. The message that is sent to the internal agent is the content of the
 GA1’s message, which has already been translated by GA1 (to validate

the
 external agent’s message) to the form understood by their internal agents.
Step 5: GA2 upon receipt of results from its internal agent, generates an ACL

message
 and sends it to the external agent via an Inform message.

− Increasing fault tolerance of the interoperability part of a legacy MAS. The FIPA-
compliant gateways may be configured to be distributed i.e. each gateway agent to
be distributed on a different host. Therefore, even if one of the gateway agents
fails, the MAS may still be able to provide its services to an external MAS through
the rest of the gateway agents.
To conclude, there are three case scenarios for the FIPA-compliant gateway that

provides interoperability between the legacy MAS and an external one: (a) a single
gateway agent with all the available services registered under its entity (b) a gateway

www.manaraa.com

Supporting FIPA Interoperability for Legacy Multi-agent Systems 171

Fig. 2. Multiple gateway agents

agent per service (c) multiple gateway agents with replicated services. According to
the MAS that need to address FIPA interoperability, developers can choose one of the
above scenarios that suit their needs.

2.2 Advantages and Limitations of the FIPA-Compliant Gateways

The proposed approach of using the FIPA-compliant gateways for conforming a
legacy MAS into a FIPA-compliant one, yields the following advantages:

− Automatic FIPA interoperability with no or limited knowledge of FIPA
specifications. The adoption of the FIPA-compliant gateways automatically
enables a legacy MAS to be FIPA compliant, capable of interoperating with any
FIPA-compliant system. The inheritance of FIPA compliance by a legacy MAS
involves the creation of the gateways and the configuration of corresponding
gateway agents. The creation of a gateway is achieved by the execution of a simple
script, where the configuration of a gateway agent involves a few code-lines.
Therefore, a developer does not have to have any knowledge of the FIPA
specifications for conforming a legacy MAS to a FIPA-compliant one.
Consequently saving time in terms of reading, understanding, applying the FIPA
specifications to the MAS that needs to address FIPA compliance and testing its
interoperability. Limited knowledge of FIPA specifications will be required for
extending the default gateway agent to support performatives currently not
provided by the GatewayAgent (GA) API. This concerns knowledge on the ACL
message structure and the performative’s specifications that needs to be supported
by the default gateway agent, as specified by FIPA.

− System’s architecture remains the same as before. Implementation is only needed
for the gateway agent and its interaction with the internal agents of the system that
provide a service represented by the former. The FIPA-compliant gateways
introduce FIPA compliance to a legacy MAS without influencing its original
architecture. The interoperability part of the architecture (i.e. the gateways) is
isolated from the rest architecture of the system. Based on FIPA, developers should
conform to the latest specifications to guarantee a 100% FIPA-compliant system.
The continuous improvement of FIPA specifications has a direct affect on the
developer’s systems since they should conform to the latest specifications. The

MAS 2

non-FIPA com pliant

service 1

service 2

service 3
service 4
service 5

EX MAS

DF

(a) (b)

AMS

FIPA ga teway

GA1

GA2

GA3

MAS 2

non -FIPA compliantFIPA compliant

service 1

EX MA S

DF
AMS

GA1

GA2

GA3

FIPA gateway

www.manaraa.com

172 C. Georgousopoulos, O.F. Rana, and A. Karageorgos

advantage of isolating the gateways from the rest of the system’s architecture
implies firstly that the original architecture of the corresponding legacy MAS is
kept intact and secondly that any new standards (the FIPA revised specifications)
which may be released in the future could be covered by a newer release of the GA
API.

− Security is increased. There are still no coherent agent security details from FIPA
at this time. Although, FIPA is planning in the future to investigate security related
issues within FIPA architecture, and formulate a long term strategy for the
integration of security features into FIPA specifications[3], [10], there is currently
debate as to whether a generic or default level of agent security ought to be
specified. It is also required that such security criteria be applicable to different
types of agent infrastructures and application domains[13]. Based on the gateways
approach, isolating the interoperable part of the architecture (i.e. the gateways)
from the rest of the system increases security. The policy of the architecture
remains hidden to the foreign Agency due to the FIPA-compliant gateways which
act as a shield for the core system. The interaction between the system and a
foreign agency is managed by the gateway agent; the rest of the agents,
hardware/software resources cannot be accessed. Securing the FIPA-compliant
gateways, from where foreign malicious agents can enter into the system, implies
minimum security for the rest of the system. Imagine that agent authentication
handled by the gateway agent for agent conversations/migrations could work as a
firewall for the legacy MAS to restricts access on agents (instead of ports, as a
traditional firewall does). The more secure the FIPA-compliant gateways are, the
less security is needed for the rest of the system. For instance, the cost of
encrypting the messages transmitted between the agents, apart from the gateway
agent, can be avoided. Consequently, the minimization of security (apart from the
FIPA-compliant gateways) also increases the overall performance of the system.
Requirements and design issues for adding security to FIPA agent systems can be
found in [13].
The limitation of the gateways’ approach lies on the kind of systems that need to

address FIPA interoperability, due to the limited performatives supported (7 out of
22) by the default GA API. Legacy systems that can automatically inherit FIPA
compliance by adopting the FIPA-compliant gateways are agent-based systems that
their need for interoperable communication with foreign FIPA-compliant systems is
mainly based on the request of information. Those systems may be database archives
managed by agent-based systems, Digital Libraries such as SARA active DL. Systems
that require complex interoperable communication i.e. e-commerce or e-market which
involve the negotiation, co-operation or co-ordination of heterogeneous agents can be
supported by the gateways’ approach, if and only if the default gateway agent is
extended to support the performatives required.

3 Steps of Deployment

The deployment of the FIPA-compliant gateways involves the following steps: (a) the
creation and configuration of the two FIPA-compliant gateways i.e. one to support
interoperability between an external MAS and the legacy one, and vice-versa, and (b)

www.manaraa.com

Supporting FIPA Interoperability for Legacy Multi-agent Systems 173

the creation of each of the gateway agents i.e. one per gateway. To facilitate the
realisation of the FIPA-compliant gateways the gateway_setup script has been
developed for the setup of the gateways and the GA API for the configuration and
maintenance of the gateway agents.

3.1 Creation of the FIPA-Compliant Gateways

As mentioned in section 2, an agent platform implementation to be considered FIPA-
compliant, it must at least adhere to the latest FIPA “Agent Management” and “Agent
Communication Language” specifications. Therefore, the gateways should also
adhere to those specifications. The creation of the gateways, that will adhere to those
specifications, may be easily achieved by using a toolkit like FIPA-OS[5]. The
gateway_setup script installs and configures the FIPA-OS toolkit on behalf of a
developer. The developer has only to specify the directory on which FIPA-OS will be
installed, a name for its platform and a list of the external platform-names that its
MAS will need to interoperate with.

Once the configuration of the toolkit is finished, the execution of a simple FIPA-
OS script starts-up the configured FIPA-agent platform (FIPA-compliant gateway)
with the AMS and DF agents initialized. The last piece remaining for the
implementation of the FIPA-compliant gateways are the gateway agents.

3.2 Creation of the Gateway Agent That Supports Interoperability between an
EX MAS and the Legacy One

An example of a simple gateway agent written in Java using the GA API is
demonstrated below. Actually, the following code example shows the implementation
of the SARA gateway agent i.e. EXSA.

Example code of the SARA EXSA gateway agent

1 import GatewayAgent.*;
2 ...
3
4 public class EXSA
5 {
6
7 public void initialise()
8 {
9 GatewayAgent EXSA;
10 IEXSA_serv exsa_serv=null;
11
12 try // get a proxy for that class
13 {
14
exsa_serv=(IEXSA_serv)Namespace.lookup("//localhost:800/EXSA_serv");
15 }
16 catch(Exception e) {}
17
18 LinkedList properties=new LinkedList();
19 properties.add("EXSA");

www.manaraa.com

174 C. Georgousopoulos, O.F. Rana, and A. Karageorgos

20 properties.add("serve_EXMAS");
21 properties.add("EX_SARA_ontology.dtd");
22 properties.add(exsa_serv);
23 properties.add("EXSA_URA");
24
25 // Set-up the SARA EXSA Gateway agent
26 EXSA=new GatewayAgent("c:/fipaos/profiles/platform.profile"
 ,”EXSA”,”SARA”);
27 EXSA.addProperty(properties);
28 ...
29 }
30 }

The commands necessary for the configuration and initialization of the gateway
agent are in bold-italics. Firstly, the GatewayAgent library must be imported (line 1).
In line 9, EXSA is declared as a gateway agent and is constructed in line 26 by calling
the constructor of the GatewayAgent with the following parameters: the location of
the platform.profile i.e the FIPA-OS configuration file which contains information
about the FIPA-agent platform (gateway) installed, a unique name for the gateway
agent and a name for its owner. Once the gateway agent has been created, it should be
configured i.e. be informed of the available services provided by its internal agents.
The addProperty method (line 27) of the GatewayAgent configures the EXSA agent
based on the information provided by the properties LinkedList. Every LinkedList
that is passed as a parameter to the addProperty method should hold information for a
single service and its content should contain the following details in order:

i) service-name ii) service-type iii) service’s ontology iv) the internal agent that
provides the corresponding service i.e. its proxy v) the internal agent’s method that
will be called once a request from an external MAS is received by the gateway
agent.

as declared in lines 18-23, in this example, for the SARA gateway agent’s service.
The gateway agent may be configured with more than one services; for each

service the addProperty method should be called with input parameter a list of the
particular service’s detailed properties that need to be registered under the entity of
gateway agent to its platform’s DF. The gateway agent maintains a property list with
content all of the registered services under its entity along with their private details
e.g. the representative internal agent of the corresponding service, its ontology etc.
The GA API supports dynamic service addition, deletion and updating. After the
configuration of the gateway agent has been successful, it automatically registers
itself with the AMS and the DF of its platform. Therefore, the steps of setting-up a
gateway agent with the use of the GA API could be achieved within a few code-lines
which involve its creation and configuration. The GA API provides multiple methods
for its configuration and maintenance which can be found in [19].

At this point the gateway agent is automatically capable of handling the
communication with an external FIPA-compliant MAS regarding a request or a
cancellation of a prior request received from the later. This is due to the limited
performatives supported by the default GA API. The following two sections describes
how a default gateway agent (generated using the GA API) handles a request for a
service, discusses the supported performatives and demonstrates how it is possible to
extend a gateway agent Class for supporting other performatives that the ones
supported initially by the GA API.

www.manaraa.com

Supporting FIPA Interoperability for Legacy Multi-agent Systems 175

Performative Handling by the Gateway Agent. Once the gateway agent receives a
request from an external FIPA agent, it locates its appropriate internal agent that can
serve the specified request based on the property list the gateway agent maintains.
The content of the received ACL message is parsed by the gateway agent against the
ontology specified by the requested service and if it is valid, the gateway agent
forwards it to its internal agent specified by the requested service’s properties. After
the request has been accomplished by the service’s internal agent representative, the
results are sent to the gateway agent. The gateway agent then generates an ACL
message with content the results received by its internal agent and gives feedback to
the external FIPA agent that initially placed the request. The interaction of the
gateway agent with the external FIPA agent is handled by the REQUEST
performative the GatewayAgent supports. A developer will only have to implement
the method of the agent that represents the requested service indicated by the service’s
properties, in this case the EXSA_URA method (of the EXSA agent). The method
should be of the form:

public String EXSA_URA(String do_undo,String message,String
convID)

This method receives as parameters the content of an ACL message subjects to the
corresponding service’s ontology, the conversation ID of the external FIPA agent
with the gateway agent, and a String of value do or undo. The conversation ID may
be used for supporting conversation sessions i.e. to identify whether a request is
related with a prior one. The do_undo variable stands as a ‘flag’ which indicates
whether a REQUEST or a CANCEL performative has been received, with values do
or undo accordingly. Therefore, according to the do_undo value the method should
either carry out (i.e. do) or cancel the task indicated by the message variable. Finally,
the method should return a String containing the results of the task that has been
carried out. Instead, a ‘positive’ or a ‘negative’ value should be return in the case
where a task has to be canceled; the return value is determined based on the
successful cancellation of the task.

Performatives Supported by a Default Gateway Agent. The generic FIPA-
compliant gateways support a limited number of performatives. A default gateway
agent created using the GA API is automatically enabled of handling a request or a
cancellation of a prior request received from an external FIPA agent. This involves
the support of seven out of the twenty two performatives currently provided by the
standard FIPA Communicative Act Library Specification[18], namely: Agree, Cancel,
Failure, Inform, Not-understood, Refuse, Request.

The interaction of a default gateway agent with an external FIPA agent over a
request or cancellation of a service is handled by the REQUEST and CANCEL
interaction protocols accordingly, as defined by FIPA specifications. Figures 3 and 4
show the FIPA interaction protocols as they have been implemented by the GA API.
The figures show the flow of performatives exchanged between the default gateway
agent and an external agent based on the events denoted in italics.

www.manaraa.com

176 C. Georgousopoulos, O.F. Rana, and A. Karageorgos

Fig. 3. FIPA Request interaction protocol

Of course this information does not concern a developer, since s/he does not have
to have any knowledge of the FIPA specifications for conforming a legacy MAS to a
FIPA compliant one, due to the FIPA-compliant gateways which are by themselves
conformed to FIPA specifications.

Fig. 4. FIPA Cancel interaction protocol

Though, a developer is capable of extending the default gateway agent to support
other performatives than the ones currently provided by the initial GA API. Based on
the GA API, the following Java Class template must be used for any performative that
needs to be supported by the default gateway agent.

Java Class template of a performative

1 package GatewayAgent;
2
3 import fipaos.agent.conversation.*;
4 import fipaos.agent.task.*;
5 import java.util.*;
6
7 public class PERFORMATIVEperf extends Task
8 {
9 private Conversation conv;
10 LinkedList properties;
11
12 public PERFORMATIVEperf (Conversation conv, LinkedList properties)
13 {
14 this.properties=properties;
15 this.conv=conv;
16 }
17
18 protected void startTask()
19 {

REQUEST

AGREE NOT-UNDERSTOOD

INFORM FAILURE

REFUSE

INPUT

OUTPUT

(from external MAS
to Gateway Agent)

(From
external MAS)

Gateway Agent
to

(message validation)

(message is valid)

(Request has been served
send the results)

(Request has not been served due
to internal agent’s error)

(message is valid but
internal agent in either

 down or unable of contacting)

(message is invalid)

CANCEL

NOT-UNDERSTOODINFORM FAILURE

INPUT

OUTPUT

(from external MAS
to Gateway Agent)

(message validation)

(message is invalid)(requested action
is canceled successfully
by the internal agent)

(requested action is
not canceled successfully

by the internal agent)

(From
external MAS)

Gateway A gent
to

www.manaraa.com

Supporting FIPA Interoperability for Legacy Multi-agent Systems 177

20 // developer’s code here
21 }
22 }

The Class must have the name of the performative that needs to be supported
accompanied by the ‘perf’ string. For instance, to support the PROPOSE performative
the Class-name must be PROPOSEperf. The code that will be executed upon the
receipt of the particular performative by the gateway agent should be placed inside the
startTask method, in line 20. Finally, the gateway agent must be informed of the new
supported performative. This is done by calling the setPerformative method of the GA
API e.g. gateway_agent.setPerformative(PROPOSE). Consequently, once the
gateway agent receives a message from an external FIPA agent containing the
PROPOSE performative, the PROPOSEperf Class will be initiated. The gateway
agent replies to an external FIPA agent with an NOT-UNDERSTOOD performative
when it receives a message of an unsupported performative by itself.

The Class template provides the conv and properties variables (initialised in lines
14 and 15). The conv variable contains information regarding a message received
from an external FIPA agent like the sender agent-name, the content of the message
e.t.c., where the properties variable contains the gateway agent’s property list
(mentioned in 3.2 section). The GAparse method of the GA API may be used to
validate the incoming message (included in the conv variable), where the FIPA-OS
API may be used for structuring and sending a reply ACL message to the external
FIPA sender agent.

Extending the default gateway agent requires knowledge on the ACL message
structure and the performative’s specifications that needs to be supported by the
gateway agent, as specified by FIPA.

3.3 Creation of the Gateway Agent That Supports Interoperability between the
Legacy MAS and an External One

This gateway agent does not provide any services. Its responsibility is to use services
provided by external FIPA compliant MAS on behalf of the agents of the legacy
MAS. The implementation of the gateway agent involves its creation (lines 1,9,26 of
code example in 3.2 section) and configuration.

The method of the GA API that configures a gateway agent is the setEXservices,
see [19]. This method receives as parameters information regarding the services
provided by an external FIPA MAS which are intended to be required by the agent of
the legacy MAS i.e. a list of services’ names, the Directory Facilitator’s name and a
list of the communication protocols supported by the external FIPA MAS that
provides the specified services. For service(s) provided by another external FIPA
MAS, the setEXservices method must be called again with input parameters the
information of the corresponding MAS. The gateway agent maintains a list of all the
external services along with their detailed information configured under its entity.

When an agent from the legacy MAS needs to use an external service, its request is
passed to the gateway agent by calling the sendRequest method of the GA API. The
gateway agent then is responsible of making contact and handling the communicating
with the external FIPA agent that provides the particular service specified by its

www.manaraa.com

178 C. Georgousopoulos, O.F. Rana, and A. Karageorgos

internal agent to accomplish the request. The communication protocol over which the
communication of the gateway agent with the corresponding external FIPA agent is
based is defined in the gateway agent’s configuration details, where the name of the
external FIPA agent that represents the requested service is traced by the gateway
agent. This is done by interrogating the DF of the external MAS of which agent of its
system handles the particular service. The sendRequest method returns the results of
the service requested by an internal agent, where a not-understood or a failed
message-string is returned if the internal agent’s request has not been understood or
failed to be accomplished by the external FIPA agent.

Note that an internal agent’s request before it is forwarded to an external FIPA
agent has to be translated to the form understood by the later based on its service’s
ontology. As well as the results received from a service provided by an external FIPA
agent have to be translated into the form understood by the agents of the legacy MAS.
Since the ontology of a service is service-depended this translation is impossible to be
made by the gateway agent itself. For this purpose the developer must create a Class
that will enable the translation process. Consequently, any message that is passed on
the sendRequest method or extracted from the content of an ACL message (holding
the results of a requested service) have to be first parsed by the developer’s Class so
as to be understood by either of the agents i.e. an external FIPA agent or an agent
from the legacy MAS. For instance, when the sendRequest gateway agent’s method is
instantiated, it sends a REQUEST to the external FIPA agent that provides the service
indicated by ex_service_name parameter with content as the content of the message
parameter; which must have already been translated by the developer’s Class.

4 Testing the Interoperability of the FIPA-Compliant Gateways

Our research is based on the Synthetic Aperture Radar Atlas (SARA) active Digital
Library[14], [15]. In order to achieve interoperability between our system and an
external one, we have adopted the generic FIPA-compliant gateways approach. In the
following section we give a brief discussion of SARA project, we demonstrate how
interoperability can be achieved by using the approach outlined previously and we
present results of experiment tests performed on the interoperability of our system.

4.1 The SARA Active Digital Library

SARA is an active digital library of multi-spectral remote sensing images of the earth
from the SIR-C Shuttle mission, which provides web-based online access to a library
of data objects at Caltech, the San Diego Supercomputer Center, and the University of
Lecce in Italy. The objective of the SARA project is to develop an infrastructure for a
high-speed, high-volume, multi-protocol distributed database, together with a means
to attach distributed computing resources for data conversion, visualization and
knowledge discovery[17].

A prototype MAS, which comprises both intelligent and mobile agents, has been
developed to manage and analyse distributed multi-agency remote sensing data; more
information can be found on our web-site[9]. The SARA architecture (figure 5) is

www.manaraa.com

Supporting FIPA Interoperability for Legacy Multi-agent Systems 179

composed of a collection of information and web servers, each of them having a
group of agents, Local Interface Agents (LIA) and User Interface Agents (UIA)
accordingly.

We separate mobile agents from stationary service agents. Our approach is to
localize the most complex functionality in non-mobile LIAs, which remain at one
location, providing resources and facilities to lightweight mobile agents that require
less processor time to be serialized and therefore quicker to transmit. LIAs are
stationary agents that provide an extensible set of services and a level of abstraction
between resource servers and requesting mobile agents. UIAs provide a front end to
the end user, for checking the user input and displaying the results.

EXSA

URA S

URA

URA

A GENT ENV IRONMENT

AGENT E NVIRONME NT

LAA LRA

LMAUAA

UMA

LSA

LIGA

DB

FILE
ARCHIVE

COMPUTE
SERVER

META-DATA

URA

LAA LRA

LMA

LSA

LIGA

Web Server

Voyager plat form

Voyager pla tform

FIPA-OS plat form

FIPA-OS platform

EXSA

URA

AGENT E NVIRONMENT

UAA
UMA

Web Server

Voyager plat form

FIPA-OS plat form

CLIENT

EX MAS

EX MAS

CL IENT

EX MAS

Web SERVER 1

Informat ion SERVER 1 Info rmation SERVER 2

URAS

AGENT ENVIRONMENT

Voyager platform

FIPA-OS platform
Web SERVER 2

message exchange

creation of agent

Manageme nt agent’s in teraction

movement

send/receive request

hidden architectural details

FIPA-compliant gatewa y

UIA: User Interface Agen t

URA: User Request Agent
UAA: User Assstant Age nt

LIA: Local In terface Agen t
LAA:
LMA:
UMA:

LSA:
LIGA:
URAS:
EXSA:

 Local Assistant Agent
 Local Management Agent
Univer sal Management Agent

Local S ecurity Agen t
Local InterGration Agent
URA’s Servant
Exter mal Service Agent

LRA: Local Retrieval Agent

DB

FILE
ARCHIV E

COMPUTE
SERVER

META-DATA

EX MAS

Fig. 5. The FIPA interoperable SARA architecture

4.2 SARA and FIPA Compliance

The introduction of FIPA interoperability into the SARA system enables it to
communicate with other MAS and vice-versa. The union of SARA system with other
MAS extends its capabilities by providing users with further information. For
instance, information retrieved from the SARA system can be further enhanced by
additional information gathered from a GIS system that is capable of interoperating
with SARA. The longitude and latitude of a particular area of the earth can be used as
parameters on a GIS (Geographic Information System) to retrieve land information
such as street names, which can then be combined with the image based on

www.manaraa.com

180 C. Georgousopoulos, O.F. Rana, and A. Karageorgos

geographical coordinates in SARA, resulting in a detailed map of the particular area.
Likewise, an external MAS can interoperate with SARA and use its information.

The interoperability of the SARA system is based on the use of FIPA-compliant
gateways which are implemented using the GA API. The architecture of the SARA
system with added FIPA interoperability is depicted in figure 5. An external multi-
agent system (EX MAS) can interoperate with SARA through the FIPA-compliant
gateway (outlined by the dashed box) which is placed on every Web-server, where
SARA can interoperate with an EX MAS through the FIPA-compliant gateway which
is placed on every Information-server. The architecture of the FIPA-compliant
gateways which is a slight variation of the architecture of FIPA-OS configuration
case 2[6] is depicted in detail in figures 6; since the FIPA-OS toolkit has been used as
the FIPA agent platform for the realization of the FIPA-compliant gateways.

Fig. 6. Representation of the FIPA-compliant gateways: (a) on the Web-server and (b) on the
Information-server

The EXSA agent is the gateway agent of the FIPA-compliant gateway placed on
every Web-server. The service provided by EXSA is the retrieval of a collection of
Earth images from the SARA DL based on specific coordinates. EXSA can be
considered similar to UAA; based on the fact that, as a user is represented by a UAA,
an external MAS is represented by an EXSA. Once, EXSA receives a valid request
from an external FIPA agent it creates a URA and forwards its request to the later
(after it has been translated by the EXSA to the form understood by URA). Then,
URA works in the same manner as if it would have been created by UAA i.e. by
starting its itinerary and migrating through the information servers for accomplishing
its task. When URA finishes its job, it sends the results back to the EXSA. Finally,
EXSA constructs an INFORM ACL message with content the information gathered
by URA and replies to the external agent from where the request has been initially
placed. The resource access level and request’s priority level is according to the EX
MAS that accesses SARA.

Finally, the URAS agent is the gateway agent of the FIPA-compliant gateway
placed on every Information-server. The purpose of this agent is to server URA with
information gathered from external FIPA-compliant MAS. When URA needs to
access an EX MAS, its request has to be first translated to the from understood by the

URAS

URA
LMA

LSA

LRA LAA

LIGA

MTS

RMI Naming ServiceCORBA Naming Service

Voyager platform

FI PA-OS platform

AMS DFACC

SARA information-server 1

A
C

L

A
C

L

A
C

L

A
C

L

L
o
o

ku
p

External MAS

ACC

MTS

A
C

L

ACL over IIOP
or RMI MTP

ACL over
RMI MTP

EXSA

Web Server
UPA

UMA

SARA web-server 1

L
o
o

ku
p

RMI Naming Service

L
o

o
ku

p

URA

MTS

RMI Naming ServiceCORBA Naming Service

Voyager platform

FIPA-OS platform

AMS DFACC

A
C

L

A
C

L

A
C

L

A
C

L

L
oo

ku
p

L
oo

ku
p

External MAS

ACC

(a) (b)

MTS

A
C

L

ACL over IIOP
or RMI MTP

ACL over
RMI MTP

RMI Naming Service

L
oo

ku
p

CLIENT

www.manaraa.com

Supporting FIPA Interoperability for Legacy Multi-agent Systems 181

external FIPA agent based on the later service’s ontology, before it is send to URAS.
Once, URAS receives a request from a URA it comes in contact with the appropriate
external FIPA agent to accomplish URA’s request. By the time URAS has not
acquired the results requested by URA, URA is free to continue with its next task (if it
has one), migrate to another Information-server or wait for URAS agent’s response.
The list of the external multi-agent systems that SARA can interoperate with is
controlled by the SARA management agents. Therefore, URA has the right to come in
contact with URAS if and only if one or more external MAS is listed in its itinerary.

4.3 Experiment Test Results

To test the interoperability of SARA system with an external one we have conducted
our experiments using two different types of agent FIPA-compliant platforms. The
first one was implemented using FIPA-OS toolkit (version 2_1_0-20030219000011,
build:314) running on Unix and the second one was implemented on JADE
toolkit[11] (version 2.4.1) running on Linux.

The tester agent of the FIPA-OS agent platform was a simple agent that was
created to search the DF of SARA system for the EXSA’s service and perform a
Request. The second tester agent was developed using the JADE agent building
toolkit and located at the Manchester Agentcities[1] node, which is hosted at the Dept.
of Computation, UMIST (University of Manchester Institute of Science and
Technology) [2].

The screenshots in figure 7 show the results of our experiments. The top picture is
the console server of the SARA web server (running on Windows XP), the middle
one is the console of the SARA information server (running on Unix) and the last one
shows the execution of the tester agent of the FIPA-OS agent platform (running on
Unix).

Initially, both of the tester agents performed a search on the DF of SARA to find
the EXSA gateway agent’s AID (Agent IDentifier) that provides the appropriate
service. The interaction of an agent with the SARA DF is managed by FIPA-OS
itself. Once, the tester agents have acquired the gateway agent’s AID, they both sent a
Request performative to EXSA, similar to the following one:

Example of a simple Request ACL message

(request
:sender agent_from_EX MAS_id
:receiver EXSA_id
:content (<?xml version="1.0" ?><ex_SARA_mes>
 <coordinates c1="16.317" c2="107.654" c3="16.061"
 c4="108.082" c5="16.828" c6="108.575"
 c7="17.087"
c8="108.144"/></ex_SARA_mes>)
:language XML
:ontology EX_SARA_ontology.dtd
…)

www.manaraa.com

182 C. Georgousopoulos, O.F. Rana, and A. Karageorgos

The coordinates specified in the content of the ACL message corresponds to the
collection of images required by the sender agent. When EXSA received the requests
from the tester agents (figure 7a) it validated them. Since the incoming requests were
valid, it replied to each of the tester agents with an Agree performative (figure 7c) and
created for each of them a proxy of the URA agent locally. URA is the internal
SARA agent that accepts as input Earth coordinates and gives as output a collection
of images corresponding to the coordinates provided. The messages sent to each URA
from EXSA were: the tester agents’ request translated into the form understood by
URA (the XML content of the message) and the conversation ID of the corresponding
tester agent’s interaction with EXSA.

After each URA has been initialized by EXSA, it communicated with its local
management agent i.e. UMA, in order to receive the itinerary that has to follow
through the SARA information servers in order to accomplish its task i.e. gather the
information requested by EXSA. UMA is responsible for constructing every URA’s
itinerary in SARA according to the information provided by the latter and the current
status of the system (known by UMA), i.e. availability of resources, server failures,
number of agents on each server. UMA may also direct URA to collect the results of
its query from a server which have already been stored by a previous agent having a
similar query. The management agent’s (UMA, LMA) interaction is described in [8].

For each URA, the steps of accomplishing their task may be traced by following
the numbers on the diagram of the SARA architecture in figure 5 or with reference to
the SARA information server’s console in figure 7b. The console records the
execution of every URA agent on the visited SARA information servers and reveals
their interaction with the local stationary agents hosted by Voyager[16] agent
platform.

After URA has accomplished its task, it sent the results back to the EXSA along
with the conversation ID, initially received by EXSA, and self-terminated. Then
EXSA replied to each of the tester agents based on the conversation indicated by the
conversation ID received from its internal agent i.e. URA, via an Inform performative
including a URL address (see figure 7b and 7c). The actual results could be acquired
by accessing the corresponding URL address.

Details on the messages exchanged between the tester agents and the EXSA
gateway agent, the translation of a Request ACL message performed by EXSA to the
form understood by URA i.e. XML, and an example of results gathered by URA
based on specific coordinates can be found in [19].

5 Conclusion

In this paper we described how a developer may adopt the generic FIPA-compliant
gateways approach for achieving automated FIPA-compliance to a legacy MAS. We
discussed the advantages and limitations of the proposed approach and we
demonstrated the successful interoperability provided by conducting experiment test
on a MAS utilizing the FIPA-compliant gateways. Our future concern is to further
extend the “gateways” by defining extra sets of operations that may be supported by
these agents. For instance, the utilisation of a security layer will enable heterogeneous
MAS to interoperate using X509 based digital certificates. In addition, an agent

www.manaraa.com

Supporting FIPA Interoperability for Legacy Multi-agent Systems 183

mobility layer would provide the capability to support agent migration between
heterogeneous MAS built on the same agent platform.

Fig. 6. Test results

www.manaraa.com

184 C. Georgousopoulos, O.F. Rana, and A. Karageorgos

References

1. AgentCities - a global, collaborative effort to construct an open network of on-line systems
hosting diverse agent based services, http://www.agentcities.org (2003)

2. AgentCities node hosted by UMIST (University of Manchester Institute of Science and
Technology), UK, http://www.agentcities.co.umist.ac.uk (2003)

3. Burg , B., Dale, J., Willmott, S.: Open Standards and Open Sources for Agent-Based
Systems, Article in: Agentlink, news 6 (2001)

4. Charlton, P., Bonnefoy, D., Lhuillier, N., Gouaich, A.,Camenen, Y.: Dealing with
interoperability for Agent Based Services, White paper,
http://leap.crm-paris.com/agentcities/Resources/resou rces.html (2000)

5. FIPA-OS, http://www.nortelnetworks.com/products/announcements/fipa/index.html
6. FIPA-OS Inter-platform Communications Configuration Guide,

http://www.nortelnetworks.com/ products/announcements/fipa/index.html (2002)
7. Georgousopoulos, C., Rana, O. F.: An approach to conforming a MAS to a FIPA-

compliant system. In First International Joint Conference on Autonomous Agents and
Multi-Agent Systems - AAMAS 2002, ACM ISBN 1-58113-480-0, Italy, Bologna (2002)
968–975

8. Georgousopoulos, C., Rana, O. F.: Combining State and Model-based Approaches for
Mobile Agent Load Balancing. In SAC 2003 - ACM Symposium on Applied Computing,
ACM ISBN 1-58113-624-2, Melbourne, Florida, USA (2003) 878–885

9. http://www.cs.cf.ac.uk/Digital-Library/
10. http://www.fipa.org/docs/output/f-out-00065/
11. JADE (Java Agent DEvelopment Framework), http://sharon.cselt.it/projects/jade (2003)
12. Panti, M., Penserini, L., Spalazzi, L., Valenti, S.: A FIPA compliant agent platform for

federated information systems. In ACIS, volume 1, issue 3. Special issue on software
engineering applied to networking & parallel/distributed computing, ISSN:1525-9293,
USA (2000) 145–156

13. Poslad, S., Calisti, M.: Towards improved trust and security in FIPA agent platforms.
Proceedings of Autonomous Agents 2000 Workshop on Deception, Fraud and Trust in
Agent Societies, Spain (2000)

14. Yang, Y., Rana, O. F., Georgousopoulos, C., Walker, D. W., Williams, R., Aloisio, G.:
Agent based data management in digital libraries. In Parallel Computing Journal, Elsevier
Science, vol. 28, issue 5 (2002)

15. Yang, Y., Rana, O. F., Walker, D. W., Williams, R., Aloisio, G.: Towards an XML and
Agent-Based Framework for the Distributed Management of Multi-Spectral Data. 6th
International Digital Media Symposium, Bradford, UK (2001)

16. Voyager, Recursion Software, Inc., http://www.recursionsw.com/osi.asp (2003)
17. Williams, R.D., Sears, B.: A High-Performance Active Digital Library, Parallel

Computing, Special issue on Metacomputing (1998)
18. FIPA Communicative Act Library Specification, http://www.fipa.org/specs/fipa00037/
19. http://www.cs.cf.ac.uk/Digital-Library/API_MessExchange.doc

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 185–200, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Dynamic Multi-agent Architecture Using
Conversational Role Delegation

Denis Jouvin and Salima Hassas

Laboratoire d’InfoRmatique en Images et Systèmes
d’information (LIRIS, formerly LISI),

Université Claude Bernard Lyon I,
43 bd du 11 novembre 1918,
69621 Villeurbanne, France

{djouvin,hassas}@lisi.univ-lyon1.fr

Abstract. This paper discusses the notions of dynamic composition and dy-
namic architectures, in the context of conversational multi-agents systems, as
well as distributed component oriented or object based systems. The directory
service or facilitator agent paradigm, commonly used for building architectures
exhibiting these properties, is examined and discussed. It is then compared with
a proposed alternative paradigm, based on dynamic conversational role delega-
tion. It is shown that the directory service paradigm, among other weaknesses,
exposes the system to synchronization problems when complex protocols are
used or concurrent access to the directory are involved, and is not transparent.
The role delegation paradigm, on the other hand, presents significant advan-
tages, including a better synchronization with ongoing conversations, and al-
lows transparent encapsulation of the compositional behavior. A working pro-
totype, focused on electronic auction and on-the-fly protocol adaptation,
through adaptation proxies, is presented to demonstrate the feasibility of the
approach.

1 Introduction

In modern complex, open and distributed systems, it is now clear that dynamicity has
become a very important requirement. Intuitively, we could define dynamicity in our
context as the ability for a system to be configured, developed, maintained, modified
at runtime, without compromising its integrity and ongoing processes. Obviously this
also influences the way we define other important system properties, such as compos-
ability, and the notion of software architecture itself.

The reasons for such an interest in the dynamicity of system composition are many:
modern systems are often too heterogeneous to allow a synchronized and uniform
maintenance, or initial development. Components are maintained and integrated by
different sources at different times. Some large systems, or even not so large systems
such as PC operating systems, would imply a too high cost in time and annoyance, if
they had to be recompiled or even shut down every time a slight change has to be

www.manaraa.com

186 D. Jouvin and S. Hassas

applied. Sometimes, the availability of a system is so critical that having to shut it
down even for a short time is unacceptable.
To address this need, during the past few years, various techniques have emerged in
the software industry: software plug-ins infrastructures, auto-upgrade features, and
dynamically pluggable component based systems. These techniques are now found in
many different application fields, such as operating systems, web browsers, media
players, to name a few, not only in very complex and distributed enterprise systems.
Mobile pieces of code, such as Java applets, servlets, Enterprise JavaBeans, and other
component models like ActiveX/DCOM or .NET infrastructures, allow for an easier
and automated deployment of components on the client side, as well as on the server
side, and thus serve the same purpose: making system modification more dynamic.

In the research literature, system dynamic reconfiguration has been explored mainly
within specific distributed component systems (see for example Conic [3]), where
component composition is achieved through explicit point-to-point connectors.

In this paper, we start from the hypothesis that maintaining or modifying a system
dynamically is best achieved by compositing, substituting or aggregating components.
All the approaches mentioned above share the concern of dynamicity; however here
we will mainly focus on Distributed Object Systems (DOS) and Component Oriented
Systems (DCOS), and Multi-Agents Systems (MAS), which probably represent the
most significant contributions on this matter. The underlying idea is to explore the
notion of dynamic composition, and identify the underlying concepts and mechanisms
worth standardizing in conversational MAS development. For this purpose, we pro-
pose to examine a powerful paradigm: conversational role delegation.

The paper is organized as follows: section 2 positions the notion of dynamic com-
position by comparing DOS/DCOS and MAS approaches, and then reformulates the
problems and issues. Section 3 introduces the concept of dynamic architecture, by
giving an overview of a common existing design and implementation technique, the
component directory or facilitator agent paradigm, and proposes an alternative ap-
proach based on conversational role delegation. Section 4 presents our prototype im-
plementation. We then conclude on the theoretical implications on interaction proto-
cols, focusing on the need for protocol composition, supported by an adequate under-
lying interaction protocol theory and formalism.

2 Dynamicity and Composability in Existing Models

2.1 Component Oriented and Agent Oriented Approaches Complementarity

By briefly looking at the history of both of these approaches, we notice that they are
quite complementary of each other regarding composability and dynamicity. This
complementarity partially justifies the current trend of these communities to get closer
to each other, since they share quite similar issues and objectives. The reader can refer
to [9] for a more detailed comparison.

www.manaraa.com

Dynamic Multi-agent Architecture Using Conversational Role Delegation 187

DOS and DCOS lack of Support for Synchronization. Distributed Object Systems
inherit composability from Object Oriented programming. Object encapsulation
provides a simple, yet efficient paradigm to decompose a system recursively into a
graph of objects. The lack of constraints on this model makes it very natural to
decompose a part of the system, represented by an object, into several subcomponents,
implemented by other objects. However this model does not help managing temporal
and synchronization complexity. Alternative composition constructs such as inner
classes or interface delegation increase composability, but are not fully dynamic.

Distributed Component Oriented systems provide plugging and self-presentation
capabilities to components, which is an important step toward system dynamic compo-
sition. Components are dynamically “plugged” into container components, and may
adapt to this context and find other components on demand. Still, the component
models do not provide a standard way to cope with synchronization problems, in case
of components involved in ongoing communications. Most of the time, the client-
server, or simple stateless service paradigm is assumed.

The fact is that real distributed systems do involve complex state-full components,
asynchrony problems, as well as transactional communications. This is where modi-
fying a system dynamically, replacing or aggregating a component, becomes difficult,
and where the “flat component” models do not suffice. Dynamically reconfigurable
distributed systems address this issue either by attempting to restore the component
states, or by waiting for the component to be in a quiescent state where no transaction
or state-full communication is interrupted.

Modern distributed object-based systems also include dynamic service discovery,
and other related complementary services, in their infrastructures. These services
allow some sort of dynamic late-binding and, thus, easier system architecture dynamic
modifications. Such architectures are discussed in section 3. However, as with most of
component oriented approaches, the synchronization between services represented by
remote objects is not considered in the model.

Multi-agents Systems lack of (recursive) Composability. Composability is seen
here as a stronger requirement than mere component interconnection: it is the ability
for a component to be composed of several components transparently, i.e. a system of
components to be perceived as one component (composite atomicity).

In Multi-Agents Systems, dynamicity is inherent to the approach. Thanks to agent
autonomy and the way agents interact, this property is theoretically verified by the
very nature of a MAS. Yet, the problem arises from the other side: most of MAS are
not composable in a well defined way, at the agent level. They theoretically involve
higher level organization and social interactions, from where compositional structures
are supposed to emerge, which probably explains why this issue is still open [8]. Sys-
tems validating this property are often referred to as holonic MAS.

To address the code reuse necessity, MAS designers have used existing componen-
tial techniques extensively, to bring reusability to the intra-agent development level.
This was strongly needed since multi-agent theories and models usually focus on agent
interaction and organization rather than internal agent implementation considerations.
The problem is that both technologies have been combined without really considering
the overlapping part (functionally speaking). Components and agents have actually

www.manaraa.com

188 D. Jouvin and S. Hassas

lots in common, and the border between them is rather thin; in other words, it is not
always easy to decide weather a given function or role should be implemented as a
component inside an agent, or as a separate agent.

Fig. 1. Functional Redundancies between Component, Agent and Agent Group Layers

In modern MAS platforms, which combine componential approaches with MAS stan-
dards such as the FIPA architecture [5], several functions are indeed redundantly
implemented at the component and agent levels, as figure 1 illustrates. Among them:
• asynchronous messaging, necessary in components managing conversation follow-

up and protocol validation, and of course present at the agent level;
• component service description, self-presentation, matching or directory service,

which are highly redundant with facilitator agents;
• component life-cycle management (naming, persistence, possibly mobility), which

are redundant with agent life-cycle management

Table 1. Approaches Comparison Summary. The following table summarizes the characteris-
tics of each approach regarding composability, scalability and dynamicity

Distributed Object Systems /
Component Based Systems

Multi-Agents Systems

Initial focus (static) composability, scalability dynamicity (inherent)
Recent

evolutions
dynamicity; service matching /
directory services.

behavior components libraries

Weaknesses
synchronization management
during compositional change;
design-time, not run-time

fixed design layers (component,
agent, group); weak scalability;
no composability at agent level

www.manaraa.com

Dynamic Multi-agent Architecture Using Conversational Role Delegation 189

2.2 MAS Composability Increases MAS Scalability

Section 2.1 discusses the redundancy, but also, while not specifically naming it, the
scalability problem. In our context, we see scalability as the ability for a system, or its
components, to be easily complexified, by adding more components and functions,
while preserving the initial design. To answer these problems, our propositions are:
• First, to unify and clearly partition the redundant functions between the component

and agent layers. This is a standardization issue, and is out of scope of this paper;
• Second, to define standard composition mechanism(s) for agents, that would allow

system designers to abstract the architecture from the design layer, and a smoother
transitions from a component-only based subsystem to an “agentification” of that
sub-system, or vice versa. This would increase the scalability.

To differentiate between the component and agent levels, our proposition is thus to
consider that components are designed to be “plugged” at design time, less dynami-
cally, whereas at the agent level, agents are always dynamically linked, allowing dy-
namic composition, reconfiguration, and higher level organization. This has two im-
plications on the design and implementation of MAS:
1. Any component that is dynamically linked, through directory services or another

mechanism, should be implemented as an agent; in other words, we state that this
function (dynamic composition) in a MAS should belong to the agent level. This
seems to us natural since a component involving dynamic composition will usually
have all the characteristics of an agent;

2. Multi-Agents Systems, even when involving a complex organization and dynamic
linking (as we will discuss in next section), should have their architecture or con-
figuration described in some way, so that designers may understand the configura-
tion at a given time, and may reverse back to a more static implementation easily.

The latter implication seems to us an open issue, since describing a highly volatile
configuration is a difficult task. The former reflects the philosophy of our approach:
whenever a component reaches a given complexity level, and present all the charac-
teristics of an agent, it should be implemented as an agent.

A typical example are the conversation managers and conversation follow-up com-
ponents that we usually find in MAS platforms — like FIPA-OS [11] tasks, Zeus [14]
finite state machines, or Jade [7] behaviors. When the interaction protocol is not triv-
ial, managing such conversation asynchronously in a reusable manner is so complex
that the composition code becomes more complex than the agent code itself.

2.3 Refined Statement of the Dynamic Composability Problem

If we can define a composition mechanism at the agent level, then a complex agent,
possibly made of complex components, would be easily replaced by a group of agents.
The conditions for such a dynamic composition paradigm to be consistent with our
previous requirements are:
1. To allow seamless composition, so that one does not need to change the rest of the

system when an agent is substituted with a composite. This is achievable by al-
lowing a group of agents to be viewed as a single (holonic) agent;

www.manaraa.com

190 D. Jouvin and S. Hassas

2. To achieve such composition in a synchronized manner, with respect to ongoing
interactions, like transactions, conversations, etc.;

3. To keep agent situatedness property intact.
From these necessary conditions, we see that composition is closely related to the
ongoing interactions of agents, and cannot be defined independently of that aspect.

Agent situatedness means here that an agent is partly defined by its situation with
respect to its environment, in our case the conversational environment. A composi-
tional relationship between agents or components should not be dissociated from the
context in which it makes sense. Thus, this relationship should not be global, but
viewable and usable only by agents belonging to that context.

In this respect, situatedness reinforces even more the fact that compositional links
are related to interactions. In the case of conversational MAS, interactions are conver-
sations, and the associated contexts are the sets of agents involved in these conversa-
tions. Section 3 generalizes this idea by defining conversations as a medium to support
dynamic compositional relationships and MAS flexible architectures.

3 Abstracting and Reifying the Architecture

In modern MAS or DOS/DCOS, we usually talk about Open Architectures, since these
systems are intended to be easily plugged with external components. Intuitively, the
term architecture comprises the idea of stability and durability. It may not be the best
word to describe such systems compositional structures at a given time, since these
structures are supposed to evolve and change — if not always dynamically, at least
quite frequently. Here we distinguish the configuration which represents the system
compositional structure at a given time, but subject to change dynamically, from the
actual dynamic architecture, which is found at a more generic level, and includes
mechanisms allowing dynamic composition and dynamic changes.

In such a system, a greater part of the compositional behavior is reified and opera-
tionalized in the system itself, not only through static bindings. In a MAS meeting
these requirements, the dynamic architecture will then be partly “agentified”, i.e. de-
termined by the behavior of some agents1. In next subsection we examine a common
paradigm used in this purpose: the directory service paradigm.

3.1 Directory Service Paradigm

The paradigm described here is a very general pattern, and can be found is various
systems, usually implemented as a specific solution, or through existing standards
such as the Object Trading Service defined in CORBA [2], the Facilitator Agent infra-
structure of FIPA architecture [5], or any other directory based solution.

1 we could substitute the word “agent” with “component” in the case of DCOS.

www.manaraa.com

Dynamic Multi-agent Architecture Using Conversational Role Delegation 191

Fig. 2. Component Directory Service or Facilitator Agent Paradigm

The principle is straightforward. In order to manage compositional relationships dy-
namically, a level of indirection is added: client components or agents must query a
directory service to get the references of the components they will interact with.

Figure 2 illustrates this late binding mechanism. When the system initializes, or
when a specific condition is met, client components look up the directory for the
server components they are interested in. Some manager components may invalidate
the link, and trigger a new lookup by the client components. In MAS, this function is
ensured by facilitator agents. Such intermediate can serve several purposes:
• application specific matchmaking, when the targeted service components or agents

obviously depend on dynamically available data;
• fault tolerance, ensuring that backup services can be made available dynamically;
• load balancing, finding a sufficiently available component or server;
• and components or agents dynamic substitution.
Some of these functionalities may be implemented at a lower level: for example, load
balancing can be managed directly by an Object Request Broker (ORB), however the
paradigm remains similar: the ORB routes messages and connects client components
to remote components dynamically, using some kind of internal directory. In this re-
spect, we may even think of such architectures, CORBA or EJB, as a kind of directory
service based architecture with a very precise service description: the object inter-
faces, possibly combined with some primary key or object IDs.

At a macro scale, Web Services, served by a UDDI directory and described by
WSDL entries, also largely comply with this general pattern, as described in [12].

All these architectures are characterized by the fact that intermediaries are, on the
contrary to the components they serve and link, explicit and fixed: they cannot be
introduced or removed dynamically.

Example: Electronic Banking Scenario. To give a concrete example, let’s imagine a
bank wishing to provide bank account online access to its customers, either through
Web Service access, or through dedicated client components. When a client first
connects, a main session component is created at the server side. Each time the client

www.manaraa.com

192 D. Jouvin and S. Hassas

issues a request, the session component searches a specialized directory component
for an adequate service component corresponding to the request type.

Since transactions are short, and services stateless, we can imagine that in this case
the directory is systematically searched by session components. If a service appears to
be out of order, then some backup component may be returned instead by the direc-
tory, or the session component may explicitly search for it. If maintenance occurs on a
service, a component substitution can be done dynamically without difficulty.

Benefits. Using extensively this paradigm actually reifies the configuration into the
Directory Component and what we named Manager Component on figure 2. What is
usually put forward by designers of such architectures is that the resulting systems are
linked dynamically, very scalable, and the maintenance is significantly eased. There is
usually no need to shutdown the system, and component substitution is done at
runtime. However this paradigm presents some weaknesses.

Weaknesses. The main problems encountered with such infrastructures are:
• The ignorance of inter-component synchronization, as discussed in 3.3;
• The composite atomicity (transparency), discussed in 2.3, is not verified;
• The directory look up constraint put on client components or agents.

Indeed, defining when client components should look up in the directory may be
application specific. In the case of fault tolerance issues, for example, a manager com-
ponent may pole the services for soundness regularly, and invalidate them if neces-
sary. More complex notification mechanism may also be used.

More generally, the client components or agents have to look up explicitly in a well
known directory, which is a constraint because the directory must be fixed.

Finally, we can point out that this paradigm tends to lead to a relatively centralized
solution, restricted by the directory capabilities in terms of service description and
matching behavior. However, we could also imagine a similar paradigm with multiple,
distributed, possibly federated, specialized directories or facilitator agents.

3.2 Conversation Centered Design

In conversational MAS, conversations are at the center of the design, since this notion
both represents the interactions taking place among agents, and the temporary roles
assigned to agents. A conversation is ruled by an interaction protocol, and an interac-
tion protocol comprises several roles (usually two, possibly multi-bilateral, but multi-
party protocols are more and more common and deserve consideration). The roles
dictate the expected behavior and responsibilities of each agent taking part of the
conversation. A conversation has the following inherent properties:
• it represents a context for a collective task, a situation;
• it has a defined life cycle, and is by nature temporary;
• it is a reusable design pattern by itself, with well defined roles and responsibilities.
If we draw a parallel between roles and interfaces, and between agents and objects,
designers could specify the configuration and dynamic architecture of the whole sys-

www.manaraa.com

Dynamic Multi-agent Architecture Using Conversational Role Delegation 193

tem in terms of roles, protocols, agents, in the same way as we do with classes, inter-
faces and objects. This approach is quite natural with the Unified Modeling Language
(UML). UML collaboration diagrams and sequence diagrams are a way to specify
protocols. Agent UML [1], for example, uses extended Sequence diagrams to repre-
sent FIPA interaction protocols.

An interesting point about conversations is that they are a natural medium for trans-
actions and sessions related concepts, at the agent level. For example, credentials and
access rights can be associated with a conversational role, rather than a thread of exe-
cution which would not really make sense in such a distributed environment. Simi-
larly, we propose to associate a compositional relationship with a conversation.

3.3 Proposed Alternative Paradigm: Conversational Role Delegation

Definition. We define conversational role delegation as the act of dynamically
delegating one agent role, in the context of a target conversation, to another agent, for
the duration of the target conversation only. The delegation itself is governed by a
simple interaction protocol similar to the FIPA brokering protocol. It has no global or
permanent meaning whatsoever, outside the context of the target conversation..

This action is different from the simple act of requesting another agent to do some-
thing, which is a weak definition of delegation used sometimes in the literature. Any
directive performative implicitly conveys this semantic. For a delegation to occur, an
agent has to initially entail the responsibility or role, and corresponding credentials,
with respect to other agent. An agent cannot delegate something that it is not sup-
posed to do first. Thus we distinguish delegation, linked to other agents’ perception of
the delegator responsibilities, from a mere request.

Implementation details. The delegator encapsulates the target conversation initial
message(s) to be sent (or received if the delegator is not initiator of the conversation)
into a delegation request, and sends the resulting message to the desired delegate.

If the delegate refuses the delegation requests, it resends back the first message(s),
encapsulated in a refuse message, to the delegator. Figure 3 illustrates the corre-
sponding interaction pattern. As we will see in section 4.1, an additional message
parameter is maintained in the target conversation messages, represented on figure 3
by the sequence (a: (X, D), b: (Y) …). This parameter represents the delegation chains
for each role, and must be updated consistently by agents performing the delegation.

To ensure a correct message delivery synchronization during delegation, and to
simplify delegating agents implementation, it seems to us natural, while not obliga-
tory, to implement the message redirection mechanism at the message transport system
level of the underlying platform (see section 4.1).

This interaction pattern resembles the FIPA-Brokering protocol, although FIPA-
Brokering is more specific and restrictive. In section 4.1 we detail the integration of
this mechanism into the FIPA environment.

www.manaraa.com

194 D. Jouvin and S. Hassas

Fig. 3. Conversational Role Delegation Principle

Seamless, Transparent and Situated Dynamic Composition. Conversational role
delegation allows building dynamic architectures verifying the requirements identified
in section 2.3. This requires the use of specific agents, which we designate by
Composition Managers, personifying the delegation strategies and compositional
behavior of the sub-system they represent. Interaction protocols also need to be
properly defined, so that independent roles and responsibilities are adequately
distributed among well defined roles or sub-roles in the organization.

Figure 4 illustrates an arbitrary initial configuration of such a MAS dynamic archi-
tecture. The composition managers assign roles by delegating them to the appropriate
agents. Some may cascade role delegation to other agents seamlessly, as does M2 with
agent 4 in the figure. Meanwhile, delegates may be involved in other conversations:
for example, in figure 4, M2 manages both r2 and r’2 in C and C’ respectively, thus
M2 manages the mapping between two sub-systems.

Manager agents serve as transparent intermediate agents, and represent the indirec-
tion level. They are responsible for the dispatching of the roles they are initially re-
sponsible for, by delegation, and may possibly require the help of external agents,
facilitator, or use any private strategy to determine the correct role assignment. Such
strategies may support a higher level organization. The important point is transpar-
ency: no constraint is put on the client agents.

Fig. 4. Example of an initial configuration with a delegational architecture

www.manaraa.com

Dynamic Multi-agent Architecture Using Conversational Role Delegation 195

Seamless dynamic composition is achieved by delegating roles or sub-roles to spe-
cific delegates, for each conversation occurrence. Delegation Managers agents have a
function equivalent to specialized facilitator agents in the directory service paradigm;
however they are seen by other agents as initially responsible for the concerned roles
or services. Recursive decomposition is easily done by cascading delegations.

Similarly, seamless decomposition is achieved by substituting a single agent with
“composite agent” sub-system — which in turn will be represented by a delegation
manager, yet this is transparent to the initial delegation manager.

The compositional links and structure of the system is determined by the delegation
strategies and behavior of the different delegation managers. Agent situatedness is also
verified: when an agent delegates a role, only the concerned agents, in the context of
the concerned conversation, are affected. Thus, the delegate may be involved in an-
other delegation, without interferences with the former one.

This agent oriented design pattern has similarities with the Abstract Factory design
pattern, as well as the Composite design patterns, described in [4], with the important
additions that it validates the situatedness and transparency properties.

Synchronization with ongoing interactions. Role delegation provides a natural
support for synchronization because a delegation is by construction attached to a
conversation life cycle. The redirection mechanism ensures that no messages will be
lost or read twice by agents and their delegates. Conversations semantically represent
consistent collective tasks, which may have a transaction semantic too, and they are
guarantied not to be broken by unsynchronized agent substitution.

Regarding this issue, the directory or facilitator paradigm has two weaknesses:
• first, the role assignment is managed by another agent, not necessarily synchronized

with the participating agents: asynchrony problems may arise if for example an as-
signment is changed during the initialization of a complex conversation, where
multiple participants are looking up for the reassigned role concurrently;

• second, in the case of cascaded facilitators, which would probably be inevitable
with large systems, the propagation of a new role assignment may lead to inconsis-
tent state during the change, unless a synchronization mechanism is used;

Such problems are avoided with delegation, because it is associated with a conversa-
tion, and because the agent responsible for the role assignment is initially involved in
the conversation, and thus has the necessary knowledge and control to keep it consis-
tent and synchronized.

Protocol composition. Protocol composition is an important in our approach, since it
inform us about the structure of interactions, which greatly helps dynamic
composition: it shows when conversations or roles can be cut, through the definition
of sub-conversations, in order to substitute or aggregate agents. This structuring
implicitly defines some sort of conversational quiescent states for the participants.

Unfortunately, there is currently no satisfying theoretical background, to our knowl-
edge, formalizing clearly protocol and conversation composition. Some theoretical
properties that would be of interest are:

www.manaraa.com

196 D. Jouvin and S. Hassas

• Role multiplicity; the conditions and constraints applying to roles assignable to
multiple agents simultaneously, are not clearly stated in the current formalisms;

• Protocol composition data, such as the role mapping between a protocol and a sub-
protocol, and the possible state synchronization between corresponding roles, is
poorly represented in current formalisms: a more formal definition would help.

Other Benefits. In terms of messages exchanged, delegation is more optimized than
directory look up. This may be appreciated if there is a high communication delay.

Finally, delegation allows encapsulating the compositional behavior and data of a
subsystem into that subsystem, which result in a distribution following the system
organization. In the case of the directory paradigm, even if directories are federated,
their distribution will not necessarily map the system inherent structure.

4 Scenarios and Prototype Implementation

4.1 Integration into FIPA Environment

The reader can refer to [6] for a detailed description of the concrete integration into
the FIPA architecture and messaging system (the current section is a brief summary).
This integration relies on two extensions of the FIPA messaging model:
1. The conversation parameter, an additional message parameter meant to extend

or replace the existing reply-to parameter; this parameter is a list of roles associ-
ated to a delegation chain (a list of agent IDs), the first in the list being the origi-
nator of the role. It should be updated by agents whenever they perform a delega-
tion, or receive an updated version of the parameter.

2. An automatic redirection mechanism at the Message Transport System level, pro-
viding agents with a platform native method call to set up a redirection for the du-
ration of a conversation, and associated to a given role.

This mechanism is not obligatory, since agents can redirect themselves subsequent
message received after the delegation. However factorizing and moving this function
into the platform simplifies agent implementation, because it is meant to be used fre-
quently in an architecture where each conversation may imply delegations. Addition-
ally, if agents are very distant, the different platforms may provide some redirection
optimizations (by redirecting messages directly to the last delegate, for example).

4.2 Electronic Auction Scenario and Prototype

Electronic auctions may not be the most illustrative scenario of the actual benefits of
such architectures, since they already include dynamic agent aggregations and substi-
tution in the auction process: new auctioneers may join or quit, some may hire bro-
kers, etc. This kind of actions seems natural in the auction context.

Having said this, auctions are also very common in MAS test-beds, which makes
them a good starting point, at least regarding the feasibility of the approach.

www.manaraa.com

Dynamic Multi-agent Architecture Using Conversational Role Delegation 197

Scenario and Prototype Description. In this scenario we consider the problem of
protocol adaptation to demonstrate the feasibility of conversational role delegation in
the FIPA environment. A seller agent implements a simple point-to-point negotiation
protocol. The latter delegates the auction initiator role to one adaptation proxy, on the
fly, depending on the intended target auction protocol. Additionally, participants
implementing incompatible auction protocols may take part of the auction, thanks to
“participant-side” adaptation proxies. Several configurations with the following FIPA
auction interaction protocols have been tested:
• FIPA-Contract-Net protocol, a single-round one-to-many negotiation;
• FIPA-Dutch-Auction protocol, an iterative auction with a decreasing price;
• FIPA-English-Auction protocol, similar but with an increasing price;
• FIPA-Iterated-Contract-Net protocol, an iterated version of Contract-net.
An additional one-to-one negotiation protocol, with two-round confirmation, is used
as a generic protocol for the seller agent, to adapt easily to auction protocols.

Proxies have two functioning modes: either they create internal Task components
for each adaptation conversation, as the standard FIPA-OS componential approach
would suggest; or they act as “factory” delegation managers, instantiating new dedi-
cated proxies on demand. Two participant-side proxies have also been designed to
adapt Dutch and English auctions participants to Contract-Net conversations.

Initiators and participants agents use a default delegation behavior component, and
search for adequate delegates when faced with protocol incompatibility. Participants
also advertise this property to the DF, since our DF is able to check for indirect map-
pings, based on the availability of adaptation proxies.

Fig. 5. Prototype Initial Configuration (Flexible Architecture). Dotted lines show potential
conversation involvements, and plain arrows show potential look up and delegations

Architecture and Implementation. This prototype is build as an extension of the
FIPA-OS platform [5]. This extension consists of a message redirection mechanism
inserted in the transport message system, and the extension of the message class to
include the conversation parameter. The Directory Facilitator implementation has
been extended to account for indirect mappings, through any declared adequate
adaptation proxy.

Seller Agent
(Negotiation)

Directory
Facilitator

Auction / C-Net
”participant-side”
adaptation proxy

Target
Auction

Generic
Negotiation

Auction or C-Net
participants (possibly
different protocols)

Negotiation /
Auction or C-Net
adaptation proxy

look up proxy
look up participant
and proxy

delegates auction
participant role

delegates
auction
initiator role

www.manaraa.com

198 D. Jouvin and S. Hassas

Figure 5 illustrates the initial configuration, with all potential conversation involve-
ments and delegation among agents. In the figure, only one proxy (of four), one “par-
ticipant-side” proxy (of two), and one participant agent (of four) are represented.

To adapt protocol roles, not only does the delegator delegates its role, but it also
starts a conversation with the latter using the protocol implemented initially; both
conversations occur at the same time.

Results and Comments. The first result from this prototyping is that the interactions
and mechanisms described in this approach are feasible, and can be integrated into the
FIPA environment, or similar ones like KQML-based platforms.

The second result is a direct comparison between the classical componential ap-
proach used in FIPA compliant agent development platforms (the first proxy func-
tioning mode), and our approach (the “factory” mode), in terms of re-usability, com-
posability, and code complexity. Dedicated proxies are equivalently complex to im-
plement compared to their corresponding FIPA-OS Task component, while bringing a
significant benefit in terms of reusability, interoperability and composability. Moreo-
ver, the implementation is closer to the multi-agents philosophy, since complexity is
expressed by agent interactions rather than intra-agent complex component composi-
tion: this approach encourages more agents, but simpler to implement.

5 Conclusion

In this paper we have presented a paradigm to build dynamic architectures in the con-
text of conversational multi-agents systems. This work also concerns distributed ob-
ject based and component oriented systems, although in these systems the notion of
conversation is not as present as with MAS. A comparison with a commonly used
paradigm, which we have been referring to as the component directory or facilitator
agent paradigm, allowed us to exhibit significant advantages of our approach, in the
case of reconfiguration with complex interaction protocols and interdependent serv-
ices integrated into synchronized collective tasks (the conversations). This paradigm
should be seen as a complement, and not a replacement, to the facilitator paradigm —
there are of course situations where the latter is more adequate.

The main point is that the notion of software architecture itself is not to be taken as
static compositional relationships in modern systems, including MAS, but as specific
environments hosting dynamic configurations. In order to design such systems effec-
tively and allow a good scalability, designers should be able to tune the levels of indi-
rections, the degree of dynamicity, as well as other non-functional aspects, without
affecting the functional design, and with a minimal impact on running agents.

Multi-agents oriented software engineering must rely on constructs that respect the
fundamental properties of MAS, including dynamicity, agent situatedness and auton-
omy. We argue in this paper that it should also somehow bring composability at the
agent level. Conversation centered design, and conversational role delegation, allow
designing architectures that fulfill these requirements. Therefore they should be con-
sidered as important aspects of agent platforms and design methodologies.

www.manaraa.com

Dynamic Multi-agent Architecture Using Conversational Role Delegation 199

The main perspective of this research is to extend our current prototype to a more
illustrative and complex scenario, where the system is subject to dynamic architectural
upheavals. Other perspectives are to rely on a more formal theory and model of inter-
action protocols composability, accounting for multi-party protocols, among other
things. Although efforts exist in this direction, such a theory is to our knowledge still
missing or immature.

While primarily centered on the idea of a meaningful compositional relationship at
the agent level, our work definitely implies a rather holonic view of MAS, and a role
oriented modeling approach where roles are dynamically assignable, as discussed
respectively in [12] and [10] in these proceedings.

References

[1] Bauer, B., Müller, J., Odell., J.: Agent UML: A Formalism for Specifying Multiagent
Interaction. In proceedings of Agent-Oriented Software Engineering 2000, Ciancarini, P.,
and Wooldridge, M., eds., Springer LNCS, Berlin (2001)

[2] OMG: Common Object Request Broker Architecture (CORBA) specifications v. 3.0
(Component Model, Object Trading Service). http://www.omg.org/technology/documents/

[3] Magee, J., Kramer, J., Sloman, M.: Constructing Distributed Systems in Conic. In Trans-
actions on Software Engineering, 15 (6), IEEE (1989)

[4] Gamma, E. , Helm, R. , Johnson, R., Vlissides, J.: Design Patterns, Elements of Reusable
Object-Oriented Software. Addison Wesley (1995)

[5] Foundation for Intelligent Physical Agents (FIPA): FIPA specifications (Abstract Archi-
tecture, Agent Management, Message Transport System, and the different Interaction
Protocol specifications). http://www.fipa.org/specification/

[6] Jouvin, D., Hassas, S.: Flexible Multi-Agent System Architecture using Dynamic Delega-
tion. In proceedings of the 6th International Symposium on Programming and Systems
(ISPS), Algiers (2003)

[7] Bellifemine, F., Poggi, A., Rimassa, G.: JADE: a FIPA 2000 Compliant Agent Develop-
ment Environment. Proceedings of the ACM International Conference on Autonomous
Agents, Montréal, Quebec, Canada (2001)

[8] Parunak, H. V. D., Odell, J.: Representing Social Structures in UML for Agent-Oriented
Software Engineering. In proceedings of Agent-Oriented Software Engineering 2001,
Wooldridge, M., Weiß, G., Ciancarini, P., eds., Springer LNCS, Montreal, Canada (2001)

[9] Jouvin, D., Hassas, S.: Role Delegation as Multi-Agent Oriented Dynamic Composition.
Proceedings of Net Object Days (NOD), AgeS workshop, Erfurt, Germany (2002)

[10] Odell, J., Parunak, H.V.D., Brueckner, S., Sauter, J.: Temporal Aspects of Dyanmic Role
Assignment. (In proceedings of AOSE 2003)

[11] Poslad, S., Buckle, P., Hadingham, R.: The FIPA-OS Agent Platform: Open Source for
Open Standards. Proceedings of the 5th International Conference and Exhibition on Practical
Application of Intelligent Agents And Multi-Agent Technology, Manchester, UK (2000)

[12] Giret, A., Botti V.: Towards a recursive agent model for an agent orient methodology. (In
proceedings of AOSE 2003)

www.manaraa.com

200 D. Jouvin and S. Hassas

[13] Stal, M.: Web services: beyond component-based computing. Communication of the
ACM, Volume 45, issue 10, ACM Press (2002) 71–76

[14] Nwana, H., Ndumu, D., Lee, L., Collis, J.: ZEUS: a Toolkit and Approach for Building
Distributed Multi-Agent Systems. Proceedings of ACM International Conference on
Autonomous Agents, Seattle, USA (1999)

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 201–213, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Temporal Aspects of Dynamic Role Assignment

James J. Odell1, H. Van Dyke Parunak2, Sven Brueckner2, and John Sauter2

1 James Odell Associates, 3646 West Huron River Drive, Ann Arbor
MI 48103-9489 USA

email@jamesodell.com
http://www.jamesodell.com

2 Altarum Institute, 3520 Green Court, Suite 300, Ann Arbor,
MI 48105-1579 USA

{van.parunak,sven.brueckner,john.sauter}@altarum.org
http://www.erim.org/{~vparunak,sbrueckner}

Abstract. A helpful abstraction of a group of agents is a set of interacting roles,
or sets of normative behaviors, that the agents can assume. An important char-
acteristic of real-world agent systems is that the roles played by an agent may
change over time. These changes can be of several different kinds. We de-
scribe an illustrative application where such role changes are important, analyze
and classify the various kinds of role changes over time that may occur, and
show how this analysis is useful in developing a more formal description of the
application.

1 Introduction

The notion of role is fundamentally a thespian concept. As humans, we find the per-
spective and language of the theater a useful analogy for describing and understand-
ing many of the same complex aspects of individual behavior [Odell, 2003]. Since we
commonly employ the notion of role in real life for conceptualizing human behavior,
it may also serve as a useful device for other kinds of individuals in a MAS—be they
life forms, active software constructs, or hardware devices.

In an agent-based system, we define role as a class that defines a normative be-
havioral repertoire of an agent. Roles provide both the building blocks for agent
social systems and the requirements by which agents interact.1 Each agent is linked
to other agents by the roles it plays by virtue of the system’s functional require-
ments—which are based on the expectations that the system has of the agent. The

1 Several possible implementation techniques exist for implementing programs that support
social entities possessing multiple and changeable class-based roles, including class inheri-
tance and aggregation. In this paper, we will not discuss program-level implementation op-
tions for treating role as a class. Instead, our emphasis will by at the analysis-level (i.e., a
conceptual and implementation-independent approach).

www.manaraa.com

202 J.J. Odell et al.

static semantics of roles, role formation and configuration, and the dynamic interac-
tions among roles has been examined closely in recent years [Ferber et al.
2003][Castelfranchi, 2000][Destani, 2003][Odell, 2001][Parunak, 2001]. However,
little work has been done on formalizing the temporal aspects of dynamic role as-
signment. As a result, role modelers refer only informally to actions such as “taking
on a role,” “playing a role,” “changing roles,” and “leaving roles.” However, such
terms can be interpreted ambiguously.

For example, consider the scenarios that follow. These six scenarios are considered
to be “changes,” yet semantically they all have a different meaning.

1. Classify – Add the role of manager to the role of Employee as the result of a pro-
motion.

2. Declassify - Remove the role of Manager as the result of a demotion.

3. *Reclassify - Change from the role of Employee to the role of Unemployed Person.

4. Activate - Take up the behaviors of the Manager role as part of the day-to-day
business activity.

5. Suspend – Stop any Manager behavior and take on just those of the Employee role
as part of the day-to-day business activity.

6. *Shift - Change from an Employee role to a Pet Owner role, where neither is
played at the same time as the other. This is a combination of activating one role
while suspending another.

(*These are composite roles, not primitives.)

These scenarios will be discussed in more depth in the following sections. Prior to
that discussion, however, some fundamental notions need to be identified and de-
fined.

Suspended

Occupied/Classified

Classify DeclassifyActivate

Suspend

Active

Fig. 1. Statechart depicting some of the permitted states and transitions of an agent in a role.

 The statechart in Fig. 1 depicts four of the operations in the scenarios above.
Here, an agent comes to occupy a role when it is classified and ceases to occupy the
role when it is declassified. Furthermore, while an agent occupies a role, it can be
either active or suspended in playing that role. Transitioning between those two
states can be achieved via the suspend and activate operations. Definitions for these
states and transition operations are as follows:

www.manaraa.com

Temporal Aspects of Dynamic Role Assignment 203

States
Occupied – The state of an entity that is an instance of a particular role.
Suspended - The state of an entity occupying a particular role, when the
role has no processes executing.
Active - The state of an entity occupying a particular role that is executing
some of all of its processes.
Operations
Classify – An operation that results in an agent being an instance of, or
occupying, a particular role.
Declassify – An operation that results in an agent no longer being an in-
stance of, or occupying, a particular role.
Reclassify – An operation that results in an agent being both declassified
as one particular role and classified as another.
Activate – An operation that results in an agent entity that is active.
Suspend – An operation that results in an agent entity that is suspended.
Shift – An operation that results in an agent entity becoming both sus-
pended within one occupied role and active in a different occupied role.

These “role-changing” operations can best be discussed by partitioning into cate-
gories of dynamics: dynamic classification and dynamic activation. The sections that
follow will describe these notions in more detail. AUML notation will also be pro-
posed.

For concreteness, we develop these ideas in the context of a specific multi-agent
application, a swarm of unpiloted air vehicles (UAV’s) that must coordinate their
actions in various ways to accomplish a collective sensing task. Section 2 describes
this application informally. Sections 3 and 4 develop and refine two aspects of dy-
namic roles: dynamic classification and dynamic activation, and suggest AUML rep-
resentations for them. Section 5 applies these refinements to the UAV application,
and Section 6 summarizes our contribution.

2 An Example Application

We demonstrate the temporal role dynamics in MAS in an example of a swarm of
small robotic air vehicles (UAV) that perform a sensing mission in an urban envi-
ronment. The mission proceeds through the deployment phase, in which the individ-
ual units are initialized and released, the target approach phase, where the swarm
moves through the urban environment and establishes a line-of-sight communications
network that links the base with the target area, the objective completion phase, where
the swarm performs its sensing task and communicates the resulting data through the
dynamic network to the base, and the recovery phase, where the swarm returns to the
base or dissolves depending on the type of UAV (disposable or not). We chose the
target approach phase for our detailed discussion of dynamic role assignment.

www.manaraa.com

204 J.J. Odell et al.

The mission as outlined in the previous paragraph cannot be performed by a single
UAV (agent), because of the restricted communications and sensing capabilities of
the units. The restriction to line-of-sight communications in the urban environment
requires that the swarm dynamically forms a communications network made up of
strategically placed perching or hovering units that route data to and from the de-
ployment base. These stations in the network are assigned dynamically as the swarm
proceeds towards its target while avoiding obstacles and threats. Thus, one role an
agent may assume during the mission is that of a Communications Node. All UAVs
in the swarm are physically capable of performing this function.

Those units that do not take on the role of a Communications Node eventually ar-
rive at the target area, ready to
perform the mission objective. At
this point, the swarm enters the
next phase of the mission as some
units take on the Sensing Node role
and coordinate with other Sensing
Nodes to perform the sensing task
specified in the mission. Only a
subset of all the UAVs in the
swarm have the more expensive
sensor packages that are capable of
performing this task. Data acquired
by the Sensing Nodes is sent to the
base through the network formed
by the Communications Nodes.

The mission swarm operates in
a hostile environment and individ-

ual units are prone to failure. Thus the communications network as well as the objec-
tive execution team has to cope with continuous attrition. An individual unit is aware
of the current state of the communications/sensing team in its local environment and
if it determines that attrition in its neighborhood threatens the performance of the
mission, either by disrupting the information flow between the base and the target
area or by removing required sensing capabilities, it seeks to recruit “uncommitted”
units to fill the gap. This recruitment attraction draws units of the initially released
swarm as well as additional units from the deployment base. The self-healing mecha-
nism requires that agents are not only aware of the presence of other units in their
neighborhood, but also that they know, which role they currently perform and which
roles they are physically capable of performing.

3 Dynamic Classification

Dynamic classification refers to the ability to change the classification of an entity.
While dynamic classification applies to both object classes and agent classes [Odell,
1998], in this paper we will discuss it in terms of agent roles. For example in Fig.

Deployment
Base

Target
Area

Sensing
Node

Communications
Node

Fig. 2. A Mission Swarm Dynamically Assigning
Communications and Sensing Node Roles.

www.manaraa.com

Temporal Aspects of Dynamic Role Assignment 205

3(a), the “Alice” agent changes from being an instance of the roles Employee, Man-
ager, and Salesperson to being an instance of the role Unemployed Person. In other
words, with dynamic classification, an agent can be an instance of different roles
from moment to moment.

Consistent with [Ferber et al. 2003], we insist that each agent have at least one role
at all times. Dynamic classification deals with adding additional roles or removing
roles beyond the minimum of one. This requirement is analogous with the notion that
every human must play the “person” role, whatever other roles they may have. In the
case of humans, this minimal role persists throughout the agent’s life. It is conceiv-
able that an artificial agent might begin with the minimal role A, add role B, then
remove role A, leaving it with the minimal role B. Whether such a fundamental re-
definition of the agent is possible will depend on such features as physical equipment
associated with the agent and the nature of the platforms on which the agent can run.

Manager

Salesperson

Person

AliceEmployee Unemployed
Person

instances of
Employee

Alice

Ted

Carol
Bob

(a) (b)

Fig. 3. (a) Dynamic classification refers to the ability to change the classification of an agent’s
role. (b) The agent “Alice” moving in and out of being classified as an Employee over time.

To become an instance of a given role, the agent is classified as an instance of, or
occupies, that role. Once classified, then, the agent occupies the new role and pos-
sesses all of its features. In the opposite process, if an agent is declassified, it is re-
moved as an instance of a particular role—and no longer occupies the role nor pos-
sesses features unique to that role. Figure 3(b) portrays the “Alice” agent being clas-
sified and declassified in terms of the role Employee. At some point in her life, Alice
is first classified as an Employee. Later, through some process, Alice is declassified as
an Employee: she becomes unemployed. At another point, Alice may become reem-
ployed, followed again by a period of unemployment. This behavior may continue
until retirement is reached or the process of death takes place. And where both op-
erations are used at the same time, an agent is said to be reclassified when it is both
declassified in one role and classified as another.

Based on the descriptions above, we can now discuss “change” scenarios 1, 2, and
3 without ambiguity:
1. Classify - Add the role of manager to the role of Employee as the result of a

promotion. In this situation, the person still remains an instance of Employee
role. However, the person becomes a new instance of the Manager role. In other
words, the person remains classified as an Employee but is now—in addition—
classified as a Manager. This is called classification.

www.manaraa.com

206 J.J. Odell et al.

2. Declassify - Remove the role of Manager as the result of a demotion. Here,
the person still remains an instance of Employee role, but is no longer an in-
stance of the Manager role. Declassification has the opposite effect of classifica-
tion in scenario 1, above.

3. Reclassify - Change from the role of Employee to the role of Unemployed
Person. In this scenario, the person ceases to be an instance of the Employee role
and becomes an instance of the Unemployed Person role. In other words, the
person was declassified as an Employee, while simultaneously being classified as
an Unemployed Person. This is called reclassification.

The table below summarizes the role assignments involving dynamic classifica-
tion: classification, declassification, and reclassification operations.2

Operation Pre-state Post-state
Classify A and not B A and B
Declassify A and B A and not B
Reclassify A B

Both UML and AUML notations would express these three operators as illustrated in
Fig. 4. Figure 4(a) indicates agent-1’s classification as role-n; in Fig. 4(b), agent-1 is
declassified as role-m; in Fig. 4(c), agent-1 is being reclassified from role-m to role-n.

agent-1:role-m agent-1:role-n agent-1:role-m

agent-1:role-n

(a) Classification (b) Declassification (c) Reclassification

Fig. 4. AUML notation for classification, declassification, and reclassification.

4 Dynamic Activation

In the previous section, we have seen how “Alice” may be classified and declassified
as Employee and Unemployed Person roles over time. Orthogonally, she may get
married and become an instance of the role Married Person and Wife. Additionally, she

2 For completeness, arguably two more operators could be added: create and terminate. The
create operator classifies entities that did not previously exist. Here, the prestate for an entity
would be null, and the poststate a particular role. Termination is the opposite, where the
prestate would be for an entity in some role and the poststate would be null.

www.manaraa.com

Temporal Aspects of Dynamic Role Assignment 207

may be confirmed as a Supreme Court Justice or buy a pet and become a Pet Owner.
While she may be a Supreme Court Justice for life, she may later give the pet away and
be removed from the Pet Owner set. Every agent, then, must always be classified in at
least one role — where Agent can be thought of as a role in its own right.3

In her lifetime, Alice may be an instance of many roles. This means, first, that the
roles that apply to an entity can change over time (dynamic classification). Second, it
means that an entity can have multiple roles that apply to it at any one moment.
When an entity is an instance of more than one role this is called multiple classifica-
tion (not to be confused with multiple inheritance).

Pet Owner

Person

Alice

Employee

(Unemployed
Pet Owner)

(Employed
Pet Owner)

(The Pet Owner portion outside
Person is the set of all pet owners that
are not people, e.g., companies that
own pets.)

Unemployed
Person

Fig. 5. “Alice” involved in both dynamic classification and multiple classification.

Multiple classification is a useful notion here, because in a society-based system an
agent is likely to be active (or quiescent) in multiples roles at the same time. How-
ever, what does it mean for a role to be “active”? In some sense, a quiescent agent
that is waiting for a message or some signal to awaken could be considered active in
its role, because alertness can be thought of an activity. UML 2.0 [OMG, 2003] offers
a useful refinement by distinguishing between user-defined actions (which are repre-
sented explicitly in sequence diagrams and activity diagrams) and fundamental sys-
tem actions such as i/o, invocation, and data flow (which are not represented as ac-
tions in these diagrams). In UML, each activation, or execution occurrence, has some
duration and is bounded by a start and stop point. We propose to take advantage of
this refinement in the following unification:

• We adopt the UML 2.0 definition of action. Any unit of behavior that has started
and has not yet ended is considered “active.” Otherwise it is “inactive.”

• We use the basic role of AgentId to specify primitive behavior. (Id in AgentId is
meant to suggest the Freudian sense of primal basic urges, not the sense of “Iden-
tity.”) Behavior such as controlling, handling data flows, and waiting for messages
and signals can be thought of as “primitive” actions that all entities must possess to
be agents. Therefore, any entity playing the role of AgentId can exhibit this basic

3 Having Agent as a role is a controversial point. However, in [Odell, 2003] we defined role
as a class that defines a normative behavioral repertoire of an agent. The basic class called
Agent defines the normative behavioral repertoire for agenthood.

www.manaraa.com

208 J.J. Odell et al.

behavior, deferring “higher-level” behavior to user-specified actions in more spe-
cialized roles. Furthermore, these basic behaviors are themselves actions. For ex-
ample, actions that support listening for messages and signals, by definition, begin
the moment an entity is classified an AgentId and cease when the entity is no longer
an AgentId. This default role satisfies the criterion by Ferber and Gutknecht [Ferber,
2003] stating that “every agent plays at least one role,” in this case the AgentId role.

• We consider roles other than AgentId to be active only when their user-defined
actions are active. Activity of primitive actions is attributed to the concurrently
executing AgentId role, not to the user-specified role.

Dynamic activation involves the following operations: activate, suspend, and shift.
These operations are discussed in “change” scenarios 4 through 6, as follows:

4. Activate - Assume the behaviors of the Manager role as part of the day-to-
day business activity. Here, the person still remains an instance of both Em-
ployee and Manager roles. However, when dealing with the employee’s boss,
the person is active in playing Employee role. Yet, when the employee starts ad-
dressing her subordinates, she also becomes active in the Manager role. In other
words, the person begins the scenario as active only in the Employee role, and
ends being active in both the Employee and Manager roles.

5. Suspend - Change from the role of Manager to the role of Employee as part
of the day-to-day business activity. As with the previous example, the person
still remains an instance of both Employee and Manager roles. In this scenario,
the person might start the day as a Manager role by approving an expense report
for a subordinate. However, if the person then reports to her boss, she suspends
her role as Manager. In other words, the person begins the scenario as classified
and active in both Employee and Manager roles, and ends with the Manager role
suspended while the Employee role remains active. (This is the opposite effect of
the scenario 3, above.)

6. Shift - Change from an Employee role to a Pet Owner role, where neither is
played at the same time as the other. Here, the person still remains an instance
of both Employee and Pet Owner roles. However, this differs from scenarios 4
and 5, because the person is not active in both roles at the same time. Here, the
person suspends his Employee role and becomes active in the Pet Owner role—
yet consistently remains classified in both Employee and Pet Owner roles.

The table below summarizes the role assignments involving activation-related clas-
sification: activate, suspend, and shift.4

4 Four combinations were omitted from this table. The situations where the pre- and post-
states have only suspended roles and where the pre- and poststates have only active roles is
not interesting here because there are no state changes. The prestate, where only active
role(s) exist and become only suspended ones, is just two concurrent cases of suspension.
The prestate, where only suspended role(s) exist and become only active ones, is just two
concurrent cases of activation.

www.manaraa.com

Temporal Aspects of Dynamic Role Assignment 209

Prestate Poststate
Operation Active Suspended Active Suspended

Activate A B A and B
Suspend A and B A B
Shift A B B A

Both UML and AUML notations would express these three operators are illus-
trated in Fig. 6. Figure 6(a) indicates agent-1 is activated as role-m; in Fig. 6(b),
agent-1 is suspended as role-m. In Figs. 6(c) and 6(d), the role of agent-1 shifts from
role-n to role-m. Asynchronous messages (indicated by the open arrowhead) do not
require a response. Therefore, the shift would proceed from the end of an execution
occurrence bar (the thin triangle over the lifeline) for one role to the beginning of the
execution occurrence bar for another (Fig. 6(c). In contrast, synchronous messages
(indicated by the solid arrowhead) require a response before proceeding. Figure 6(d)
depicts an agent in role-n sending a message that activates role-m. Since the message
is synchronous, all role-n processing is suspended until control is returned from role-
m (the dashed arrow).

agent-1:role-n agent-1:role-m agent-1:role-n agent-1:role-m

(a) Activate (b) Suspend

agent-1:role-n agent-1:role-m agent-1:role-n agent-1:role-m

(c) Shift (asynchronous) (d) Shift (synchronous)

Fig. 6. UML and AUML notation for expressing activate, suspend, and shift.

For graphical clarity, message lines can be supplemented with stereotypes. For the
activate, suspend, and shift operations, the stereotypes would be «activates», «sus-
pends», and «shifts».

www.manaraa.com

210 J.J. Odell et al.

5 The Application Analyzed

Let us now revisit the sensing mission example (Section 2) in the light of the formal
specification of role dynamics. At the moment of deployment, the units with the sen-
sor package occupy three roles (Task Controller, Flight Controller, and Sensor) and
the units without the sensor package occupy three roles (Task Controller, Flight Con-
troller, and Communications Node).

The Task Controller (TC) role is activated when the UAV is first turned on. It is
responsible for dynamically determining the current tasks that the unit performs dur-
ing the mission. It uses a set of role activation and transition rules to determine what
task it should be performing.

The role of Flight Controller (FC) specifies behaviors needed to control the
movement of the UAV such as path planning, collision avoidance, etc. The Task
Controller will initially inform the Flight Controller of the target location and the
Flight Controller will begin to move the UAV towards the target area.

The Sensor role manages the task of collecting the target data and transmitting the
results back to the deployment base station. When it is activated, it may give new
flight coordinates to the Flight Controller so it can perform its function.

The Communications Node (Comms) role, causes the UAV to maintain line-of
sight with nearby neighbors and relays communications packets between the base
station and the rest of the swarm. It also sends movement commands to the Flight
Controller.

The transition rules (in the Task Controller role) are context dependent (e.g., where
is the agent, what is its state, what is the locally perceived demand for certain func-
tions within the swarm) and constrained by the unit’s physical capabilities (e.g.,
available sensors, remaining fuel) and individual preferences (e.g., risk aversion,
susceptibility to peer-pressure). The rules combine the current context, constraints,
and preferences to determine current active role(s) as well as whether to declassify
current roles and classify new roles.

For instance the Task Controller role in a UAV may perceive a lack of UAVs with
active Communications roles within its line of sight and choose to activate its Com-
munications role5. Once the Communications role is activated it maintains line of
sight with its nearest neighbors and relays messages. Other UAVs in the vicinity,
perceiving the newly activated role, continue on their original flight plan towards the
target area realizing that the communications relay function is sufficiently covered in
that area now. The Communications role remains active until the mission is complete
and the UAVs begin their egress back towards the deployment base. Once its position
as a relay point is no longer required to maintain communications with the swarm, it
suspends the Communications role and the Task Controller instructs the Flight Con-
troller to head home. Figure 7 shows the AUML diagram for this UAV (not all the
interactions are shown on the diagram). A similar diagram could be developed for the

5 The Task Controller uses a probabilistic decision process to determine whether to activate
the role. The exact nature of the decision process is beyond the scope of this paper.

www.manaraa.com

Temporal Aspects of Dynamic Role Assignment 211

nodes that activate their Sensor role when they reach a target area to coordinate with
other UAVs collecting data on the target.

Since there are only a few UAVs with sensor packages, they would normally not be
used to serve as communications relays. But in an emergency they can perform that
function. Since they do not initially occupy the role of Communications Node, they
must change their role through a classification operation. Figure 8 depicts one of
these UAVs that was in the middle of a sensing role and determined that there was a
higher priority need to fill a Communications Node role. It suspended the Sensor role,
classified the new role of Communications Node, and activates that new role. Classi-
fication in this case is more than just activation of previously existing code in the
UAV. A communications relay must have current routing information. The exact
form of this information varies with the communications protocol in use, but the
information is dynamic and in the nature of the case must be learned by a relay UAV
before it can perform this function. Classification is only possible for a UAV that has

learned this information (perhaps
by lurking on the network for a
while without relaying, or by re-
questing routing information from a
nearby routing UAV and using this
as a first approximation).Part of
what the Task Controller does in the
process of classifying the UAV for
the relay role is acquiring this
routing information.

A last example demonstrates re-
classification. In Fig. 9 the UAV
performing its sensing task (active
Sensor role) experiences a hardware
failure in its sensor package so it

Flight Ctl Task Ctl

A

B

C
Comms

SensorFlight CtlFlight Ctl Task CtlTask Ctl

A

B

C
Comms

Sensor

CommsComms

SensorSensorSensor

Fig. 8. Classification. A: TC determines a need to
change to a Communications role, so it suspends
the Sensor role, B: Classifies the Comms role, and
C: activates the Comms role.

Flight Ctl Task Ctl
A

B

C

CommsFlight CtlFlight Ctl Task CtlTask Ctl
A

B

C

CommsComms

Fig. 7. AUML for a Communications
UAV. A: TC instructs FC to move to
target area. B: Enroute, TC determines
need to stop and serve as com-
munications relay. C: Mission
completes, Communcations role is done,
and TC tells FC to fly home

Sensor

Comms

Flight Ctl Task Ctl
A

B

C
D

SensorSensor

CommsComms

Flight CtlFlight Ctl Task CtlTask Ctl
A

B

C
D

Fig. 9. Reclassification. A: TC instructs FC to fly to
target area B: UAV reaches target and TC activates
Sensor role C: Sensor HW failure, reclassify as
Communications Node, D: TC activates a Comms
role.

www.manaraa.com

212 J.J. Odell et al.

can no longer perform the sensor function. It immediately reclassifies itself from the
Sensor role to the Communications Node role which is later activated by the Task
Controller when it determine a need for that role in the area. Similarly if the UAV
loses its ability to move (e.g., through hardware failure, or loss of fuel) the Flight
Controller role would be declassified and the Task Controller would probably activate
the Communications role (if not already active) to serve the mission in its only re-
maining capacity. This may free up a nearby UAV serving as a communications node
to move on to perform some other function elsewhere in the swarm.

6 Conclusion

Roles are increasingly recognized as a valuable abstraction for modeling groups of
agents. In dynamic environments, an agent may change the roles it plays over time.
Analysis of these changes show that they fall into two general categories.

1. The more conventional concept is Dynamic Activation. An agent may incorpo-
rate multiple roles but not be active in all of them at the same time. Varieties of
Dynamic Activation describe the different patterns in how an agent activates or
suspends the various roles that it possesses.

2. Dynamic Classification deals with the more fundamental binding between an
agent and a role. Straightforward mechanisms for role assignment in contempo-
rary programming languages (e.g., inheritance from a class defining the role’s
behaviors) are static and persist for the agent’s lifetime. However, the concept of
Dynamic Classification encourages us to conceive of roles being bound to an
agent after the agent is instantiated, and unbound without terminating the agent.

We have demonstrated the usefulness of these concepts in formalizing the behav-
iors of a swarm of unpiloted air vehicles performing a cooperative sensing task.

The notion of roles invites a new approach to agent programming, in which the
unit of agent invocation is the role rather than the individual behavior. In such a role-
oriented programming environment (ROPE), invocation consists of passing an agent
a role and an execution environment (compare the notion of Agent Coordination
Context in [Omicini, 2002]), and it is up to the agent to carry out the role in that con-
text. Development of ROPE is a future opportunity for this line of research.

Acknowledgements. This work is supported in part by DARPA, contract F30602-02-
C-0196 to Altarum, under DARPA PM Vijay Raghavan. The views and conclusions
in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the US Government.

The authors are grateful to their colleagues Paul Chiusano, Bob Matthews, Mike
Samples, and Peter Weinstein for insightful review and comments on earlier drafts of
this paper.

www.manaraa.com

Temporal Aspects of Dynamic Role Assignment 213

References

Castelfranchi, Cristiano (2000) "Engineering Social Order," Engineering Societies in
the Agent World, Springer, Berlin, pp. 1–18.

Dastani, M., V. Dignum, and F. Dignum (2003) “Role Assignment in Open Agent
Societies” in Proceedings of AAMAS’03, Second International Joint Conference on
Autonomous Agents and Multi-agent Systems. 2003. Melbourne, Australia.

Ferber, J., O. Gutknecht, et al. (2003). “Agent/Group/Roles: Simulating with Organi-
zations.” Fourth International Workshop on Agent-Based Simulation (ABS03), Mont-
pellier, France.

Martin, J. and J.J. Odell, Object-Oriented Methods: A Foundation. UML ed. 1998,
Englewood Cliffs, NJ: Prentice Hall.

Odell, J.J., Advanced Object-Oriented Analysis & Design using UML. 1998, Cam-
bridge, UK: Cambridge University Press.

Odell, J., H.V.D. Parunak, and B. Bauer (2001) “Representing Agent Interaction
Protocols in UML,” in Agent-Oriented Software Engineering, P. Ciancarini and M.
Wooldridge, eds. 2001, Springer: Berlin. p. 121–140.

Odell, J., H.V.D. Parunak, and M. Fleischer (2003), “The Role of Roles in Designing
Effective Agent Organizations,” in Software Engineering for Large-Scale Multi-
Agent Systems, A.F. Garcia, et al., eds. 2003, Springer-Verlag: Berlin.

Omicini, A. Towards a notion of agent coordination context. In D. Marinescu and C.
Lee, Editors, Process Coordination and Ubiquitous Computing, 187–200. CRC Press,
2002.

Parunak, H. Van Dyke and James Odell (2001) "Representing Social Structure using
UML," Proc. of the Agent-Oriented Software Engineering Workshop, Agents 2001
Conference, Paolo Ciancarini, Michael Wooldridge, and Gerhard Weiss eds., Agents
2001 conference, Montreal, Canada, Springer.

www.manaraa.com

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 214–230, 2004.
© Springer-Verlag Berlin Heidelberg 2004

From Agents to Organizations: An Organizational View
of Multi-agent Systems

Jacques Ferber, Olivier Gutknecht, and Fabien Michel

LIRMM – University of Montpellier II, 161 rue Ada,
34592 Cedex 5, Montpellier, France

{ferber,olg,fmichel}@lirmm.fr

Abstract. While multi-agent systems seem to provide a good basis for building
complex software systems, this paper points out some of the drawbacks of clas-
sical “agent centered” multi-agent systems. To resolve these difficulties we
claim that organization centered multi-agent system, or OCMAS for short, may
be used. We propose a set of general principles from which true OCMAS may
be designed. One of these principles is not to assume anything about the cogni-
tive capabilities of agents. In order to show how OCMAS models may be de-
signed, we propose a very concise and minimal OCMAS model called AGR,
for Agent/Group/Role. We propose a set of notations and a methodological
framework to help the designer to build MAS using AGR. We then show that it
is possible to design multi-agent systems using only OCMAS models.

1 Introduction

Since their development in the 80’s multi-agent systems have been considered as
“societies of agents”, i.e. as a set of agents that interact together to coordinate their
behavior and often cooperate to achieve some collective goal. It is clear, from this
conception, that the body of multi-agent researches should be concerned by both
agents and societies. However, an important emphasis has been put on the agent side.
Multi-agent systems have particularly been studied at the micro-level, i.e. at the level
of the states of an agent and of the relation between these states and its overall be-
havior. In this view, communications are seen as speech acts whose meaning may be
described in terms of the mental states of an agent. The development of communica-
tion languages such as KQML and FIPA ACL follows directly from this frame of
mind.

We will use the term “agent centered multi-agent system” or ACMAS for short to
talk about this type of classical multi-agent systems designed in terms of agents’
mental states. As we will see in the following section, ACMAS suffer from some
weaknesses that cannot be solved at the agent level, because they reside deep in the
core of ACMAS foundational principles.

Recently a particular interest has been given to the use of organizational concepts
within MAS where the concepts of ‘organizations’, ‘groups’, ‘communities’, ‘roles’,
‘functions’, etc. play an important role [4] [9] [13] [14] [16]. We will call ‘organiza

www.manaraa.com

From Agents to Organizations: An Organizational View of Multi-agent Systems 215

tion centered multi-agent systems’ or OCMAS for short, multi-agent systems whose
foundation lies in this kind of organizational concepts.

Thinking in terms of organization design differs from the agent-centered approach
that has been dominant during many years. An organization oriented MAS is not
considered any more in terms of mental states, but only on capabilities and con-
straints, on organizational concepts such as roles (or function, or position), groups (or
communities), tasks (or activities) and interaction protocols (or dialogue structure),
thus on what relates the structure of an organization to the externally observable be-
havior of its agents. However, while OCMAS might solve, as we will see, the main
weaknesses of ACMAS, their characteristics and consequences, have somehow been
left out and have not been presented clearly. We will see in this paper, that it is possi-
ble to design MAS using only organizational concepts. At first, this approach needs a
new state of mind to get away from the agent oriented, now classical, conception.
However, it does not mean that agent mental states must be thrown away; we only
want to stress that it is possible to build organizations as frameworks where agents
with different cognitive abilities may interact. Section 2 will show that some of the
weaknesses of ACMAS appear as consequences of the mere foundational principles,
somehow implicit, of ACMAS. Section 3 will introduce the main concepts of
OCMAS and a set of fundamental principles that could be considered as a kind of
manifesto for designing MAS from a pure organizational perspective. In order to
show that it is possible to design OCMAS in this framework, we will present, in sec-
tion 4, a generic but simple organizational model for building OCMAS, called AGR
for Agent/Group/Role. This presentation will include the basic concepts and the nota-
tion one can use to describe organizations. The remaining sections will introduce a
simple example and a sketch of a methodology based on these organizational con-
cepts.

2 Drawbacks of ACMAS

It has been shown that the world of software engineering may benefits from the con-
cepts and architectures proposed by the MAS community [9, 16] in order to simplify
the design of complex software systems. In order to make MAS systems ready for
industrial applications, a non-profit association called FIPA, has proposed a set of
norms and standards that designers of multi-agent systems should meet to make their
MAS compatible with other systems. An interesting point about these standards, and
the platforms that have been built according to them (see Jade [17] and Fipa-OS for
instance [18], is that they are based on some assumption that lies somewhere in the
core of most of early work on MAS.
1. An agent may communicate with any other agent.

2. An agent provides a set of services, which are available to every other agent in
the system.

3. It is the responsibility of each agent to constrain its accessibility from other
agents.

www.manaraa.com

216 J. Ferber, O. Gutknecht, and F. Michel

4. It is the responsibility of each agent to define its relation, contracts, etc. with
other agents. Thus, an agent “knows” directly (through its acquaintances) the set
of agents with which it may interact.

5. Each agent contains with its name its way to be accessed from the outside (the
notion of Agent ID well known by all designers of MAS). Therefore, agents are
supposed to be autonomous and no constraint is placed on the way they interact.

In this situation, as Jennings and Wooldridge have been pointed out, ACMAS may
suffer some drawbacks when engineering large systems [10], which leads to two
major drawbacks, according to Jennings [9]: the patterns and the outcomes of the
interactions are inherently unpredictable, and predicting the behavior of the overall
system based on its constituent components is extremely difficult (sometimes impos-
sible) because of the high likelihood of emergent (and unwanted) behavior.

Surely, freedom has a price: it is not possible to suppose that agents designed by
different designers could interact altogether without any problems. Some assumptions
have to be made about the primitives of communications (the “performatives” of the
language) and about the architecture of agents (for instance, agents may be assumed
to behave purposively in a cognitive way, using some kind of BDI architecture).
However, agents do not have access to these constraints that are specified as ISO-like
standards, and they do not have the possibility to accept, or refuse, to follow them.
This imposes a strong homogeneity on agents: agents are supposed to use the same
language and to be built using very similar architectures. The other weaknesses of
these MAS are:

1. Security of applications: The possibility that all agents may communicate with-
out any external control may lead to security problems. When all agent may in-
teract freely altogether, it is the responsibility of agents (and therefore of the ap-
plication designer) to check the qualification of its interlocutors} and to imple-
ment security controls. Because there is no “general” security management, it is
easy for an agent to act as a pirate and use the system fraudulently.

2. Modularity: in classical software engineering, entities that closely work together
are grouped into modules or “packages”. For each module, rules of visibility are
defined. Some entities may be seen by other packages (and even by the whole
software) whereas others, so called private entities, are hidden and therefore not
accessible from outside the package. This is not possible with AOMAS where all
agents are accessible from everywhere. It should be important to propose a way
to group together agents that have to work together. However, this proposal
should not stay on static grounds, but propose a way to group together active
agents that work together.

3. Framework/component approach. Modern software engineering has shown the
importance of the framework/component concept. A framework is an abstract ar-
chitecture in which components plug-in. It is often necessary to define sub-
frameworks of frameworks. Unfortunately, in ACMAS, there is only one frame-
work, the platform itself, and it is not possible to describe sub-framework in
which specific interactions could be built.

www.manaraa.com

From Agents to Organizations: An Organizational View of Multi-agent Systems 217

To overcome these difficulties, Jennings proposes [9] a solution in the definition of
a social level characterization of agent based systems, which follows Newell’s levels
of computer systems. However, this paper did not develop the main features of or-
ganization and their consequences in the process of analysis and design of MAS.

In the following, we will extend and continue these prospects by presenting and
analyzing the main concepts of organization centered multi-agent systems (OCMAS)
and their properties for building MAS. During our discussion, we will focus on a
specific model of OCMAS, called AGR, for Agent/Group/Role, a simple though very
powerful and generic organizational model of multi-agent systems.

3 Organization Centered MAS

3.1 Definitions

There are several definitions of what an organization exactly means. Indeed, the word
“organization” is a complex word that has several meanings. In [6], Gasser proposed
the definition of organization to which we subscribe:

An organization provides a framework for activity and interaction through the defini-
tion of roles, behavioral expectations and authority relationships (e. g. control).

This definition is rather general and does not provide any clue on how to design
organizations. In [15] Jennings and Wooldridge propose a more practical definition:

We view an organisation as a collection of roles, that stand in certain relationships to
one another, and that take part in systematic institutionalised patterns of interactions
with other roles”.

However, this definition lacks a very important feature of organizations: their par-
titioning, the way boundaries are placed between sub-organizations. Except in very
small organizations, organizations are structured as aggregates of several partitions
which may overlap, sometimes called groups or communities, contexts, department,
services, etc. and each partition may itself be decomposed into sub-partitions. From
these definitions, it is possible to derive the main features of organizations:

1. An organization is constituted of agents (individuals) that manifest a behavior.

2. The overall organization may be partitioned into partitions that may overlap (we
will call these partition groups from now on)

3. Behaviors of agents are functionally related to the overall organization activity
(concept of role).

4. Agents are engaged into dynamic relationship (also called patterns of activities
[6]) which may be “typed” using a taxonomy of roles, tasks or protocols, thus de-
scribing a kind of supra-individuality.

5. Types of behaviors are related through relationships between roles, tasks and
protocols.

www.manaraa.com

218 J. Ferber, O. Gutknecht, and F. Michel

An important element of organizations is the concept of role. A role is a descrip-
tion of an abstract behavior of agents. A role describes the constraints (obligations,
requirements, skills) that an agent will have to satisfy to obtain a role, the benefits
(abilities, authorization, profits) that an agent will receive in playing that role, and the
responsibilities associated to that role. A role is also the placeholder for the descrip-
tion of patterns of interactions in which an agent playing that role will have to per-
form (in this paper, we do not distinguish between role and role assignment as in
[12]). Organization may be seen at two different levels: at the organizational (or so-
cial) level and at the concrete (or agent) level (from [3]):

We will call organizational structure [11] (or simply structure, if there is no ambi-
guity) what persists when components or individuals enter or leave an organization,
i.e. the relationships that makes an aggregate of elements a whole. Thus, the organ-
izational structure is what characterizes a class of concrete organizations at the ab-
stract or organizational level.

Conversely, a concrete organization (or simply organization), which resides at the
agent level, is one possible instantiation of an organizational structure. This is a reali-
zation consisting of entities that effectively take part in a whole, together with all the
links that bring these agents into association at any given moment. It is possible to
relate an organizational structure to a concrete organization, but the same organiza-
tional structure can act as a basis for the definition of several concrete organizations

An organization consists in two aspects: a structural aspect (also called static as-
pect) and a dynamic aspect:

The structural aspect of an organization is made of two parts: a partitioning struc-
ture and a role structure. A partitioning structure indicates how agents are assembled
into groups and how groups are related to each other. A role structure is defined, for
each group, by a set of roles and their relationships. This structure defines also the set
of constraints that agents should satisfy to play a specific role and the benefits result-
ing to that role. The dynamic aspect of an organization is related to the institutional-
ized patterns of interactions that are defined within roles. It defines also the modali-
ties to create, kill, enter groups and play roles, how these modalities are applied and
how obligations and permissions are controlled, how partitioning and role structures
are related to agents’ behaviors.

3.2 General Principles of OCMAS

Previous sections have allowed us to understand the basic concepts of organizations.
It is now time to consider multi-agent systems from an organizational perspective.
The question now is: what are the main principles from which organization centered
multi-agent systems (OCMAS) may be approached for both analysis and design? The
use of organizations provides a new way for describing the structures and the interac-
tions that take place in MAS. The organizational level, the way organizations are
described is thus situated in another level than the agent level that is often the only
level considered in ACMAS. This level, which may be called “organizational level”
(or “social level” as in [9]) is responsible for the description of the structural and
dynamical aspects of organizations. This organizational level is an abstract represen-

www.manaraa.com

From Agents to Organizations: An Organizational View of Multi-agent Systems 219

tation of the concrete organization, i.e. a specification of the structural and dynamical
aspects of a MAS, which describes the expected relationships and patterns of activity
which should occur at the agent level and therefore the constraints and potentialities
that constitute the horizon in which agents behave.

Principle 1: The organizational level describes the “what” and not the “how”. The
organizational level imposes a structure into the pattern of agents’ activities, but does
not describe how agents behave. In other terms, the organizational level does not
contain any “code” which could be executed by agents, but provides specifications,
using some kind of norms or laws, of the limits and expectations that are placed on
the agents’ behavior.

Principle 2: No agent description and therefore no mental issues at the organiza-
tional level. The organizational level should not say anything about the way agents
would interpret this level. Thus, reactive agents as well as intentional agents may act
in an organization. In other words, ant colonies are as much organizations as human
enterprises. Moreover, seen from a certain distance, or using an intentional stance [2]
it is impossible to say if the ants or the humans are intentional or reactive. Thus, the
organizational level should get rid of any mental issues such as beliefs, desires, inten-
tions, goals, etc. and provide only descriptions of expected behaviors.

Principle 3: An organization provides a way for partitioning a system, each parti-
tion (or groups) constitutes a context of interaction for agents. Thus, a group is an
organizational unit in which all members are able to interact freely. Agents belonging
to a group may talk to one another, using the same language. Moreover, groups es-
tablish boundaries. Whereas the structure of a group A may be known by all agents
belonging to A, it is hidden to all agents that do not belong to A. Thus, groups are
opaque to each other and do not assume a general standardization of agent interaction
and architecture.

These principles are not without consequences:
1. An organization may be seen as a kind of dynamic framework where agents are

components. Entering a group/playing a role may be seen as a plug-in process
where a component is integrated into a framework.

2. Designing systems at the organizational level may leave implementation issues,
such as the choice of building the right agent to play a specific role, left opened.

3. It is possible to realize true “Open System” where agent’s architecture is left
unspecified.

4. It is possible to build secure systems using groups as “black boxes” because what
happens in a group cannot be seen from agents that do not belong to that group.
It is also possible to define security policies to keep undesirable agents out of a
group.

4 AGR: A Basic Model of OCMAS

In order to show how these principles may be actualized in a computational model,
we will present the basics and methodology of the Agent/Group/Role model, or AGR

www.manaraa.com

220 J. Ferber, O. Gutknecht, and F. Michel

model for short, also known as the Aalaadin model [4] for historical reasons. We
show that this model complies with the OCMAS general principles that we have pro-
posed in the previous section.

4.1 Definitions and Axioms

The AGR model is based on three primitive concepts, Agent, Group and Role that are
structurally connected and cannot be defined by other primitives. They satisfy a set of
axioms that unite these concepts.

Agent: an agent is an active, communicating entity playing roles within groups.
An agent may hold multiple roles, and may be member of several groups. An impor-
tant characteristic of the AGR model, in accordance with the principle 2 above, is that
no constraints are placed upon the architecture of an agent or about its mental capa-
bilities. Thus, an agent may be as reactive as an ant, or as clever as a human.

Group: a group is a set of agents sharing some common characteristic. A group is
used as a context for a pattern of activities, and is used for partitioning organizations.
Following principle 3, two agents may communicate if and only if they belong to the
same group, but an agent may belong to several groups. This feature will allow the
definition of organizational structures.

Role: the role is the abstract representation of a functional position of an agent in a
group. An agent must play a role in a group, but an agent may play several roles.
Roles are local to groups, and a role must be requested by an agent. A role may be
played by several agents.

We denote by x.send(y,m) the action of an agent x sending a message m to an
agent y, by roleIn(r,g) the statement that the role is defined in a group g, and by
plays(a,r,g) the statement that the agent a plays the role r in g. We also denote by
GStruct(g,gs), the statement that g is a group considered as an instance of the group
structure gs, and member(x,g) the statement that an agent x is a member of a group g.
Here are the axioms of the structural aspect of the AGR model:

a) Every agent is member of a (at least one) group:

∀x:Agent, ∃g:Group, member(x,g)

b) Two agents may communicate only if they are members of the same group:

∀x,y:Agent, ∀m:Message, x.send(y,m) ∃g:Group, member(x,g) ∧ member(y,g)

c) Every agent plays (at least one) role in a group:

∀x:Agent, ∀g:Group ∃ r:Role, plays(x,r,g)

d) An agent is a member of the group in which it plays a role:

∀x:Agent, ∀g:Group, ∀r:Role
plays(x,r,g) member(x, g)

www.manaraa.com

From Agents to Organizations: An Organizational View of Multi-agent Systems 221

e) A role is defined in a group structure:

∀x:Agent, ∀g:Group, ∀r:Role, plays(x,r,g) ∃gs:GroupStructure ∧ GStruct(g,GS) ∧
roleIn(r,GS)

Roles may be described as in Gaïa [15] by attributes such as its cardinality (how
many agents may play that role). It is also possible to describe structural constraints
between roles. A structural constraint describes a relationship between roles that are
defined at the organizational level and are imposed to all agents. In AGR, we propose
two structural constraints: correspondence and dependence. A correspondence con-
straint states that agents playing one role will automatically plays another role. For
instance, to express the, quite classical, political correspondence between delegates of
smaller groups (states, departments, regions) which are automatically members of
another group where they act as representative (deputies, ambassador, etc.) we would
use the following statement:

Role(‘delegate’,GS1) → Role(’representative’,GS2)

where GS1 and GS2 are group structures. This constraint may be defined as follows:

∀x:Agent, ∀g:Group, where GroupStructure(g,GS1), ∃g’:Group where GroupStruc-
ture(g’,GS2) such that: plays(x,’delegate’,g) plays(a,’representative’,g’)

If the two roles have the same set of members, we will use the notation ↔. For in-
stance, in most human organizations (associations, corporation, syndicates, etc.), all
voters are eligible. In our notation, we would express this constraint as:

role(‘voter’,GS1) ↔ role(‘eligible’,GS1)

whose definition is as follows:

∀x:Agent, ∀g:Group, where GroupStructure(g,GS1), plays(x,’voter’,g)
plays(x,’eligible’,g) ∧ plays(x,’eligible’,g) plays(x,’voter’,g)

Dependence constraints express dependencies between group membership and role-
playing. For instance, an agent is authorized to be a director of a Laboratory only if it
is also a researcher in the lab. This would be expressed in the following way:

Role(‘director’,’Lab’) requires Role(‘researcher’,’Lab’)

Its semantics could be defined in a 1st order logic as follows:

∀x:Agent, ∀g:Group, where GroupStructure(g,’Lab’), plays(x,’director’,g)
plays(a,’researcher’,g’)

The AGR meta-model is represented figure 1 in UML. Several notations may be used
to represent organizations. In [13] a notation based on UML has been proposed to
represent groups and roles. This is a very convenient notation to represent the abstract
structures of an organization, but concrete organizations cannot be represented in this
notation. This is why we will use the following another notation, that we call the
cheeseboard diagram, which is very convenient to represent examples of concrete
organizations.

www.manaraa.com

222 J. Ferber, O. Gutknecht, and F. Michel

Interaction
protocol

Group structure Role1..*

source participant

1

*

1..*

*

Role Constraint

1

1 1
target

Agent

Group

*

1..*

*

1..* plays

1
described by

1 1

initiator

1

Agent level

Organization level

Correspondence Dependency

Interaction
protocol

Group structure Role1..*

source participant

1

*

1..*

*

Role Constraint

1

1 1
target

Agent

Group

*

1..*

*

1..* plays

1
described by

1 1

initiator

1

Agent level

Organization level

Correspondence Dependency

Fig. 1. The UML meta-model of AGR

4.2 The “Cheeseboard” Diagram

In the cheeseboard diagram, a group is represented as an oval that looks like a board.
Agents are represented as skittles that stands on the board and sometimes go through
the board when they belong to several groups.

R1 R2

R3

R4 R5

R6

A

C

B

D
E

F

H

JG1
G2

G3

Fig. 2. The "cheeseboard" notation for describing concrete organizations

A role is represented as a hexagon and a line links this hexagon to agents. Figure 2
gives an example of a concrete organization using the cheeseboard diagram. In this
picture, the agent F is a member of both G2 and G3, playing roles R4 and R5 in G2,
and R6 in G3.

4.3 Describing Organizational Structures

The cheeseboard notation, while very suitable for concrete organization, is not suited
to the description of relationships within organization at an abstract level, i.e. for the
definition of organizational structures. Thus, we have introduced a notation for de-
scribing organizational structures.

www.manaraa.com

From Agents to Organizations: An Organizational View of Multi-agent Systems 223

In order to express organizational diagrams in a more simple and convenient way,
we propose a set of graphical items. In this notation, group structures, i.e. abstract
representation of groups, are represented as rectangles in which roles, represented as
hexagons, are located. Constraints are represented as arrows between roles. We use
two kinds of arrows. Large arrows are used for correspondence and thin arrows are
use for modeling dependencies.

Interaction diagrams, which are represented as rounded rectangles, are used to de-
scribe communication protocols between roles. Without considering the way agents
communicate, it is possible to describe communications at an abstract level, i.e. as
specific constraints between roles. An interaction may takes place between two or
more agents and is described at the organizational level between roles. The role ini-
tiator of the interaction is represented by an arrow that points towards the interaction.
Other participating roles are represented as simple lines between interaction and roles.
The figure 3 shows an organizational structure related to the concrete organization of
figure 1. In this diagram, many different cases are represented. There are 3 group
structures, called GS1, GS2 and GS3. The dependency d1 expresses a correspondence
between the role R2 of GS1 and the role R3 of GS2. This allows for the definition of
agents that act as representative between two groups. The dependency d2 expresses a
dependency between R4 and R5, which means that all agents playing R5 must play
R4. Interactions I2, I5 and I6, which are related to only one role, will be performed by
different agents playing the same role. The interaction I3 takes place between agents
playing three roles. Interactions may be figured by different types of diagrams: auto-
mata, Petri nets or sequence organizational diagrams.

R1

R2

R3
R4

R5

R6

GS1 GS2

GS3

I1
I2 I4

I3

I5 I6

d1

d2

Fig. 3. Organizational structure representation

4.4 Describing Organizational Activities

To describe the dynamics of organizations, i.e. the temporal relation that is expressed
between organizational events, such as the creation of groups, the entering or leaving
of a group by an agent or the acquisition of a role in relation, we will use a specific
notation, that we call organizational sequence diagram, which is a variant of the
sequence diagram of UML (or AUML) [1].

www.manaraa.com

224 J. Ferber, O. Gutknecht, and F. Michel

Group1

Group3

Group2.

Role1 Role2 Role3

Role5.Role4.

t

Playing a
new role

Creation of
a new group

Leaving a role

Entering
a group

Messages

Fig. 4. The organizational sequence diagram

Whereas in AUML vertical lines correspond to agents, in our diagram, the life of
an agent is made of several segments of the same color (unfortunately, colors are
displayed as gray levels in this paper). Each segment describes the “life” of an agent
playing a specific role in a specific group. Thus, it is possible to represent the fact that
an agent may belong to several groups and play several roles at once. Figure 4 shows
a general view of this type of diagram.

4.5 Groups Dynamics

Groups may be built at will. A group is created upon request of an agent, from an
already described group structure. A group structure may be ‘blank’, thus allowing
agents to build roles at will and to enter groups without any limits. However, in the
general case, entering a group is a rather complex process, because an agent has to be
authorized to enter a group. Due to axiom b) an agent cannot communicate directly to
agents belonging to the group. Thus, it cannot request a permission to enter a group to
agents belonging only to that group. A solution to this problem lies in the organiza-
tion itself, in its possibility to build complex organizational structures. We will as-
sume that an agent is permitted to enter a group only if it provides the right authori-
zation. This agent could get this authorization in an “examination” like organizational
pattern. An ‘entrance’ group, associated to the group A, acts as an “air lock” between
the group A and its exterior. There is no authorization required for A to get the ‘can-
didate’ role in an entrance group. The ‘gatekeeper’ agent could then check the con-
formity of this agent to the specification of the structure and roles of the group A.
Figure 5 shows this adhesion process using a cheeseboard diagram. The semantics of
this process has been described in [5] using a variant of the π-calculus.

www.manaraa.com

From Agents to Organizations: An Organizational View of Multi-agent Systems 225

Entering
dialog

GroupManager

Member

I want to enter
the group A

GroupManager

A

GatekeeperCandidate

Entrance Group

Authorization

Entering
dialog

GroupManager

Member

I want to enter
the group A

GroupManager

A

GatekeeperCandidate

Entrance Group

Authorization

Fig. 5. The cheeseboard representation of a group adhesion process.

It should be clear that this is only a simple aspect of all the organizational patterns
that could be used to manage the organizational activities of an OCMAS. We just
wanted to show that it is possible to manage an OCMAS using only OCMAS features!

Obviously, when it will come to implementation of agents, designers would have
to relate the architecture and the cognitive properties of their agents to the organiza-
tional structure and dynamics of such a system. We only claim that, in OCMAS, this
aspect would be considered in a second phase.

5 Methodology

Notations are not sufficient to describe a methodology. In this paper, we will only
briefly suggest the key point of how a methodology could be defined on an OCMAS
model. The designer should first identify the main groups of the application. A group
may be used for two main purposes:
• To represent a set of similar agents. In this case, a group is merely a collection

of agents that exhibit certain similarities. There are usually few roles and a role
may contain many agents. For instance, in AGR, to have a set of agents using the
same communication language, such as ACL FIPA, one could design a FIPA
group. Then the FIPA agents called the Directory Facilitator (DF) and the Mes-
sage Transport Service (MTS) would be represented as agents playing the DF
and MTS roles respectively. All other agents would merely have a simple ‘mem-
ber’ role.

• To represent a function based system: each role then corresponds to a function
or a subsystem of a whole system. Agents then act as specialists characterized by
their skills to achieve functions associated to the roles. For instance in a computer
network, printers have the ability to print and may be associated to the role of
‘printer’. A soccer robot team would have the roles ‘goalkeeper’, ‘leader’, ‘at-
tacker’, ‘middle’, etc.

www.manaraa.com

226 J. Ferber, O. Gutknecht, and F. Michel

Once these groups have been identified, the overall organizational structure is built
using some organizational patterns [7, 11] such as the e-commerce organizational
pattern that is presented in the next section as an example.

The partitioning of agents describes the way an organization is decomposed into its
sub-components, and optionally the way these sub-components are further decom-
posed into their own sub-components, and the way these sub-components are aggre-
gated. In AGR, hierarchies of groups, also called holarchy by Odell and Parunak [13]
where a group is represented by an agent at the next level, may be represented by an
organizational pattern where some ‘delegate’ agents in one group are seen as ‘repre-
sentative’ agents in another group.

When the organizational structure is built together with organizational dynamic of
group creation and adhesion, it is time to get into the definition of roles in a func-
tional way. Then one could use the Gaia [15] methodology to fill the roles and relate
them to the general structure. Our vision has some connection with object-oriented
design, where the key diagrams are the class diagrams, which represent the static
aspects of objects, and the sequence diagrams, which gives an insight of the dynamic
aspects of objects. We use the same kind of distinction with the organizational struc-
ture diagrams and the organizational sequence diagrams. However, we often use the
cheeseboard diagram to get a first idea of the organizational patterns one could use to
build an OCMAS.

6 Example

In order to explain how the AGR model may be used for analyzing and designing
multi-agent systems, we will present an example taken from a situation that all re-
searchers know very well: the “reviewing process” of papers in a conference. There
are three group structures: the program committee group structure, the submission
group structure (for a given conference there is only one group for each of these
group structures), and the evaluation group structure. The program committee has
only two roles: a program chair and a PC member. The submission group contains
also two roles: submission receiver, which receives papers, and author. There are
several submission groups, and the reviewing manager must be part of the program
committee group. It is clear from this diagram that agents may belong to different
groups: a committee member may be a reviewing manager of an evaluation group
and an author submitting a paper (Fig. 6).

www.manaraa.com

From Agents to Organizations: An Organizational View of Multi-agent Systems 227

Evaluation Groups

Program chair PC-member

Submission
receiver

Author

Reviewer Reviewing
manager

Submission Group

Program
committee
Group

Fig. 6. The organization of a program committee using a cheese-board notation

The figure 7 presents the organizational structure of such an organization. Interac-
tions such as ‘distribute papers to review’ or ‘notification of acceptance’ are protocols
that relate agents through their roles. These protocols could be represented by any
kind of diagram for representing protocols (finite state automata, Petri nets, etc.).

Figure 8, shows an organizational sequence diagram representing some part of the
reviewing process. An author submits a paper to the submission receiver which is also
the program chairman. As such, he/she asks a program committee member to review
the paper. Then, this member creates a submission group and distributes the paper to
the reviewers. When the reviewer has done its job, the committee member says that
the paper is accepted (or rejected) and the submission receiver then sends an accep-
tance message to the author. Doing so, the author is therefore accepted as a speaker of
the conference.

Program chair PC-member

Submission
receiver

Author

Reviewer
Acquire competence

Distribute papers to review

Negotiate evaluation

Distribute papers
and get evaluations

Submit paper

Program committee
group structure

Notification of acceptance

Reviewing
manager

Submission group
structure

Evaluation
group structure

Fig. 7. The organizational structure diagram of the reviewing process example.

www.manaraa.com

228 J. Ferber, O. Gutknecht, and F. Michel

:SubmissionGroup

:Conference

:ProgramCommittee

Author Sub. rec Pr. chair Member

AttendeeSpeaker

Submit
Review-paper

Acceptance
Accept-paper

speak

:Submission
Group

ReviewerRev. Man.

Give-paper

Weak-accept

Strong-accept

Fig. 8. A possible organizational sequence diagram of the reviewing process organization.

7 Conclusion

In the introduction, we have claimed that ACMAS have some drawbacks that
OCMAS may resolve. For this reason, we have proposed a general framework to
understand and design MAS based on organizational concepts such as groups, roles
and interactions, which may overcome some of the weaknesses of ACMAS. We have
presented the AGR model in this framework, showing how it is possible to design
applications using these concepts that totally adhere to the OCMAS principles that we
have introduced previously (see section 3.2):

1. The AGR architecture does not describe the “how”, and only specifies the “what”
by describing organizational structures made of group structures and roles.

2. We have not used mental issues such as intentions, goals or beliefs to describe
the AGR model. We do not say that we should not use them: only that it is possi-
ble to build complex MAS architecture without using them. It is then the respon-
sibility of the design process to describe agents able to live and interact in such
architectures.

3. AGR provides a way for partitioning a system through the concept of group.

www.manaraa.com

From Agents to Organizations: An Organizational View of Multi-agent Systems 229

Thus, the main drawbacks of ACMAS disappear: it is possible to build secure appli-
cations at the group level, by designing gate keeper roles that prevent unauthorized
agents to enter a group, or by describing norms (obligations, permissions, interdic-
tions) that are related to groups and roles (this latter feature will be presented in a
forthcoming paper). Complex programs may be built by using groups as dynamic
frameworks that agents may create, enter and leave at will during their lifetime. In
software engineering terms, agents may now be considered as some kind of dynamic
“components” that live in dynamic frameworks.

Moreover, we claim that AGR is certainly one of the smallest possible organiza-
tional models. The structure or roles, is left open for the moment, but may be ex-
tended by integrating the most recent propositions on the nature of roles (see for in-
stance [12]).

We have presented a set of diagrams (organizational structure, “cheeseboard” dia-
gram, and organizational sequence diagrams) which may represent the different as-
pects of OCMAS. We have also sketched how these concepts may be used in a meth-
odology based on organizational principles.

Organizational concepts may be used for practical implementations. The MadKit
platform [8] that we have designed is built around the AGR model. Since its first
release, hundreds of users (thousands of downloads) have been able to use these or-
ganizational concepts (presented in a less rigorous way than here) to build applica-
tions in various areas.

Many aspects of organizations, such as functional views, deontic aspects (concepts
of norms and institutions) and the use of reflection to build complex MAS platform
have been left over and will be presented in future papers.

References

1. Bauer, B., Müller, J.P. and Odell, J., Agent UML: A Formalism for Specifying Multiagent
Interaction. in Agent-Oriented Software Engineering, (2001), Springer, 91–103.

2. Dennett, D.C. The Intentional Stance. M.I.T. Press, Cambridge, Massachusetts, 1987.
3. Ferber, J. Multi-Agent Systems: an introduction to distributed artificial intelligence.

Addison-Wesley, 1999.
4. Ferber, J. and Gutknecht, O., Aalaadin: a meta-model for the analysis and design of organi-

zations in multi-agent systems. in Third International Conference on Multi-Agent Systems,
(Paris, 1998), IEEE, 128–135.

5. Ferber, J. and Gutknecht, O., Operational Semantics of a Role-Based Agent Architecture. in
Agent Theories, Architectures and Languages, (Orlando, 2000), Springer-Verlag.

6. Gasser, L. An Overview of DAI. in Gasser, L. and Avouris, N.M. eds. Distributed Artificial
Intelligence: Theory and Praxis, Kluwer Academic Publishers, 1992, 9–30.

7. Giorgini, P., Kolp, M. and Mylopoulos, J., Organizational Patterns for Early Requirement
Analysis. in IEEE Joint Int. Requirements Engineering Conference (RE'02), (Essen (Ger-
many), 2002).

8. Gutknecht, O., Michel, F. and Ferber, J., Integrating Tools and Infrastructure for Generic
Multi-Agent Systems. in Autonomous Agents 2001, (Boston, 2001), ACM Press, 441–448.

9. Jennings, N.R. On Agent-Based Software Engineering. Artificial Intelligence, 117 (2).
277–296.

www.manaraa.com

230 J. Ferber, O. Gutknecht, and F. Michel

10. Jennings, N.R. and Wooldridge, M. Agent-Oriented Software Engineering. in Bradshaw, J.
ed. Handbook of Agent Technology, AAAI/MIT Press, 2000.

11. Mintzberg, H. The Structuring of Organizations. Prentice-Hall, 1979.
12. Odell, J. and Parunak, H.V.D., The Role of Roles in Designing Effective Agent Organiza-

tions. in Software Engineering for Large-Scale Multi-Agent Systems, (2003), Springer.
13. Parunak, H.V.D. and Odell, J., Representing Social Structure in UML. in Agent-Oriented

Software Engineering II, (Montreal Canada, 2002), Springer, 1–16.
14. Rocha Costa, C. and Demazeau, Y., Toward a Formal Model of Multi-Agent Systems with

Dynamic Organizations. in ICMAS'96, (Kyoto, 1996), AAAI Press.
15. Wooldridge, M., Jennings, N.R. and David, K. The Gaia Methodology for Agent-Oriented

Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems, 3 (3). 285–
312.

16. Zambonelli, F. and Parunak, H.V.D., From Design to Intentions: Signs of a Revolution. in
AAMAS 2002, (Bologne (Italy), 2002), ACM Press, 455–456.

17. The Jade Platform : http://sharon.cselt.it/projects/jade
18. The Fipa-OS platform: http://sourceforge.net/projects/fipa-os

www.manaraa.com

Modelling Multi-agent Systems with Soft Genes,
Roles, and Agents�

Qi Yan, XinJun Mao, Hong Zhu, and ZhiChang Qi

Department of Computer Science and Technology, Team 6,
National University of Defense Technology,
Changsha, 410073 China, +86 731 4535411

yanqi nudt@yahoo.com.cn

Abstract. The underlying homogeneousness between human being in a
society and software agent in a MAS (Multi-Agent System)is opened out
in this paper, based on which a new definition and architecture for agent
is proposed. An agent is made of certain soft genes and roles. Such agents
can be more appropriate for dynamic, open system’s analysis, design and
implementation. The associated structure model and behavior model of
MAS are described. A MAS modelling methodology RoMAS (Role-based
MAS modelling methodology) based on these definitions is presented
through RoboCup simulation football team case, including its graphical
modelling language and the modelling process.

1 Introduction

Agent-Oriented Software Engineering (AOSE), Multi-Agent System (MAS) [1,
2] and Agent-Oriented Programming (AOP) [3,4] attract much attentions in
software development field. They are even regarded as a revolution by some
researchers [5]. Meanwhile, Agent-Based Social Simulation (ABSS) receives so-
cial researchers’ great attentions, e.g. RoboCup [6] has already become an ideal
test-bed for both ABSS and MAS.

Since it is agent that associates ABSS and MAS, the first question we need
to answer is ”what are agents?”. This paper will address this question in a new
way and propose a MAS modelling methodology to make Multi-Agent Based
Simulation (MABS).

The remainder of this paper is organized as follows. Section 2 illustrates the
homogeneousness between human being and software agent. Section 3 presents
the main idea of soft gene, role and agent. Section 4 introduces agents structure
and behavior model. Section 5 illustrates the usefulness of the concepts by mod-
elling a RoboCup [6] simulation football team using RoMAS (Role based MAS
modelling methodology) [7]. Section 6 discusses related works. Section 7 gives
some conclusions and discusses the future works.
� This work is supported by the National Science Foundation of China under Grant

No.600003002; the National High Technology Development 863 Program of China
under Grant No.2002AA116070.

P. Giorgini, J.P. Müller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 231–245, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

www.manaraa.com

232 Q. Yan et al.

2 From Human Study to MABS

From Descartes, Kant, Floyd, etc. to Karl Marx, after their studying of nearly
400 years, human essence research recognized that human individual holds both
natural and social properties [8]. Such a theory may help software researchers to
understand agent and multi-agent system for that human and society give good
examples for agent and MAS, from basic apperceive, interaction to challengeable
dynamic, open properties.

2.1 Traditional Agents: Make Actions and Interactions

Current agent-oriented methodologies (see [9] for a survey of them) lack of the
ability to deal with distributed systems’ open, dynamic properties for which the
radical reason is the understanding and definition of agent.

Existing agent-oriented software methodologies, e.g. Gaia [4], usually take an
agent as a software component that autonomously behaves and collaborates with
others in certain environments. But how to add or change interaction of new
types between agents at run-time? These problems are cause by open and dy-
namic properties of MAS and have not been addressed by the methodologies [10].
Currently, some agent-oriented software methodologies introduce multiple inheri-
tance and dynamic inheritance mechanisms to deal with the problems, while they
are recognized as negative factors for system robustness and maintainability.

To address these problems, we may need a new understanding about agent.
We notice that an agent is quite like a human individual in our society —-
it can make actions and interact with others, which gives us big intellectual
enlightenment.

2.2 Human Individuals Have Genes and Roles

Karl Marx said in On Feuerbach, 1845, ”The first premise of all human history
is, of course, the existence of living human individuals. Thus the first fact to be
established is the physical organization of these individuals and their consequent
relation to the rest of nature.”

As Karl Marx mentioned, ’the existence of living human individuals’ and ’the
physical organization of these individuals’ are essential to any intelligent indi-
vidual. Our understanding is that two concepts are essential to creatures: gene
and role. A gene is a hereditary unit that occupies a specific location on a chro-
mosome and determines a particular characteristic in an organism. Genes exist
in a number of different forms and can undergo mutation [11]. Dawkins said in
his famous book The SELFISH GENE [12] that human beings are nothing but
gene machines. We accept his theory and regard human beings behave under
the control his genes. Later we will illustrate how to distill basic behaviors and
characters from software agents and then get soft genes. A role is the charac-
teristic and expected social behavior of an individual [11]. Roles make human
beings have social intelligence of communicating and cooperating.

www.manaraa.com

Modelling Multi-agent Systems with Soft Genes, Roles, and Agents 233

2.3 New Agents: Learn from Human through Homogeneousness

To understand human beings, several questions need to be answered. They are
described in figure 1. It represents:

1. What activities do human beings do? Human beings do two typical kinds of
activities (noted as rectangles): (1) Practice Activity: A human lives in the
world, he/she can apperceive from/react to the world, E.g. when a football
player kicks a football without any intention, he/she is doing a practice
activity. Such an activity may be the reaction to environment’s alternation,
instinctive actions under genes’ control, etc.; (2)Social Interaction Activity:
A human lives in a society, he/she takes certain social roles so as to interact
with others, E.g. when a football player (as a vanguard) transports a football
to his/her teammates (maybe an attacker), a social interaction activity is
happening.

2. What medias do human beings use? Human beings use two typical kinds of
medias (noted as rectangles):(1)Tool System: Human beings use tool system
to perform practice activities (as the dashed line describes), e.g. eyes, ears,
mouth, hammer, etc.; (2)Social Interaction System: Human beings use social
interaction systems to perform social interaction activities. These interaction
systems include English grammar, contract, etc.

3. What relations do human beings have? Three circles respectively represent
three layers in which an agent reflect to itself or relate to other agents or the
environment. The Being is the human self, which can be seen as the container
of genes and roles. Before it is combined with some Individual ’s mental atti-
tudes and to Role organization, it can not do anything. In Individual layer,
it relates to itself mental attitudes and it makes practice activities (as the
dashed line describes); in Role organization layer, it relates to other agents
through their roles and it makes social interaction activities; in Environment
layer, it relates to real/virtual world objects and it makes practice activities.

Fig. 1. Human being’s activities, medias and layers

www.manaraa.com

234 Q. Yan et al.

When we homogeneously map human properties to agent (although we have
not defined agent yet, we still can use this word to see what properties it should
have), we get figure 2. It represents:

1. What activities does an agent do? An agent does two typical kinds of ac-
tivities (noted as rectangles, the curved lines connecting circle/ellipse side
and rectangles represent an association relation):(1)Practice Activity (ar-
rows between agent and environment/itself): An agent lives in the software
system, it should be able to apperceive from/react to the system, E.g. when
a software football player kicks a football, it is doing a practice activity.
Why and how such activities be performed? Such an activity should be un-
der something’s control. We call it soft genes (noted as SGi in figure 2, i
is 1,2,3,etc.) which is defined in the next subsection; (2)Social Interaction
Activity (arrows between agents represent social interaction activities, the
curved lines connecting arrows and rectangles represent an association re-
lation): An agent lives in a virtual society, it takes certain social roles so
as to interact with others, E.g. when a software football player (as a van-
guard) transports a football to its teammates (maybe an attacker), a social
interaction activity is happening.

2. What models does an agent use to make activities? Agents use these typ-
ical kinds of models (noted as rectangles, the curved lines connecting cir-
cle/ellipse side and rectangles represent an association relation, the curved
dashed lines represent some activity use some models):(1)Model on itself:
Agents use Function Libs, Behavior Rules, Role Alternation Rules (see sec-
tion 4) to determine what to do at certain time; (2)Role Organization Model
and Communication Protocol: Agents use these models to perform social in-
teraction activities. Notice that we regard environment model belongs to (2)
since the environment can also be a role.

3. What relations does an agent have? In ’SGi’ layer (smaller ellipses), it relates
to itself and it makes practice activities; in ’Role organization’ layer (bigger
ellipses), it relates to other agents through their roles and it makes social
interaction activities; in ’Environment’ layer (circles), it relates to virtual
world objects and it makes practice activities.

Now that we have already completed the homogeneousness analysis, it is
necessary for us to distill substaintial concepts from the complex phenomenon
as figure 2 shows so as to make it easy for understanding them.

2.4 A New Understanding for Agents

Thinking from a bionic point of view, software agents bear an analogy to human
beings for that they both require the properties of autonomy, reactive, etc. We
propose two concepts, i.e., soft gene and role, for further defining software agent.

1. A soft gene (for agent) is a hereditary unit that determines some particular
characteristics in a software component. It defines certain physical attributes

www.manaraa.com

Modelling Multi-agent Systems with Soft Genes, Roles, and Agents 235

Fig. 2. Agent’s activities, models and layers

and behaviors. After adopting certain soft genes, the software component
(agent) can make certain practice activities, update its own behavior rules,
etc. In other words, a software component with certain soft genes can do
something and knows how to do them by itself.

2. A role (for agent) is the characteristic and expected social behavior of a soft-
ware component. It defines certain responsibilities and cooperation patterns.
After binding certain roles, the software component (agent) can know and
make social interaction activities. In other words, a software component with
certain roles can do something and knows how/why to do them with others.

An agent is a software component that composed by certain soft genes and
bound with certain roles.

In the next section, we will give formal definition for these concepts. Here, we
regard environment as a role which may seldom affected by other system roles or
may be a quite active role in an open and dynamic system, then the third layer
agents live in can be reduced to role layer and soft gene layer. The importance
of such a reduction is that we can use as least concepts as possible to simulate
a society with MAS. We may simulate environment of an agent as all the other
agents. However, since it does not affect what we discuss about soft genes and
roles, we leave it for further research.

3 Soft Gene, Role, and Agent

The meta-model of multi-agent system is as below: an agent is composed by a
certain set of soft genes bound with a certain set of roles; an agent’s ability of

www.manaraa.com

236 Q. Yan et al.

action is determined by its genes; an agent communicates with others through
its bound roles.

3.1 Soft Gene

We have defined a soft gene is a hereditary unit that determines some particular
characteristics in a software component. For example, a football (an object in a
computer simulation football match) is a software component and its soft genes
are shape, color, texture, springiness, size, weight and so on. We may define a
component with such genes:

< Genes − − shape : round ; color : black and white; size : 24cm; texture :
leather ; weight : 430g ; springiness : good >

It can almost be assured that we are talking about a football. However, soft genes
are not just attributes. Considering another software component in a simulation
football match, a player, his/her soft genes are both attributes (height, weight,
run speed and so on) and behaviors (run(), goal(), grab() and so on) with the
ways in that those behaviors perform (some player like to give the football to
teammates while some others will take the football by themselves).

Once the soft genes are determined, the software component’s existence of
living ... individuals is completely described. (The physical organization of these
individuals will be discussed in the next subsection.) Before we can move to
definition of any of above concepts, we must first define some primitives. A
behavior is an action’s being called from outside/self and performed to cause
a discrete event that changes the state of the environment. An attribute is a
perceivable feature (of the world).

Definition 1. A soft gene is an entity that comprises a set of behaviors and a
set of attributes.

In Z [13], before constructing a specification, we must first define types. Here
we define the set of all behaviors and the set of all attributes:

[Behavior ,Attribute]

We note that behavior and attribute are considered as basic types and no
further definitions are given. Now a state schema can be constructed that defines
a soft gene. (For the meanings of the Z notations, readers are referred [13].)
In the schema, e cando, i cando are the sets of behaviors(external observable
or internal observable) of the soft gene; e attributes, i attributes are the sets
of features(external perceivable or internal perceivable) of the soft gene. Soft
genes are therefore defined by their ability in terms of their behaviors, and their
configuration in terms of their attributes.

Softgene
e cando : P Behavior
i cando : P Behavior
e attributes : P Attribute
i attributes : P Attribute

www.manaraa.com

Modelling Multi-agent Systems with Soft Genes, Roles, and Agents 237

Some additional properties of soft gene should be illustrated:

1. Heteromorphism: soft genes can be organized into different abstract levels.
a) As software production: the genes are 1 and 0. Every software production

is a sequence of 0 and 1;
b) As model: the genes are chosen characteristics of modelling entities. For

example, when we simulate a football player, we just need to consider
his/her weight, height, characteristics, ability of kicking not painting;

c) In implementation: the genes are certain programming language mecha-
nisms, such as Class, Interface in C++, Java and so on.

2. Inhomogeneity: different applications require different soft genes. To simulate
an office system, we care about officers’ name, salary, ability to use computer,
etc.; to simulate a football player, we care about his/her weight, height,
characteristics, ability of kicking not painting.

3. Inheritance: genes can inherits from other genes. It is important for reuse.
4. Aggregation: genes can be aggregated into a bigger gene.

3.2 Role and Role Organization

Soft genes determine software individuals’ existence of living, The physical orga-
nization of these individuals makes the backbone of one system. A role represents
the expected social behavior of an individual. All roles as a whole can be regarded
as the physical organization of a multi-agent system. For the last example, if a
player has such role description:

< Roles : − − Always : Left guard ; Possiblely : Left front >

We can state that this player should defense attacks from left side; most time
he/she communicates with the goal keeper role.

Definition 2. A goal is a state of affairs to be achieved in the environment.

Definition 3. A service is a behavior framework, which determines how the
behavior be performed by the soft gene that binds the role.

Goal == P Attribute
Service == P Behavior

Definition 4. A role is an encapsulation of some attributes with the addition
of goals and services.

Role
services : P Service
goals : P Goal
e attributes : P Attribute
i attributes : P Attribute

goals �= φ
services �= φ

www.manaraa.com

238 Q. Yan et al.

Some relations between roles are:

1. Relational: In any system, a role almost always appears with at least another
role that it interacts with. E.g., whenever there is a role of teacher, there
must be a role of student. Otherwise, the role of teacher is meaningless.
In summary, a role defines the relationships among individuals, also the
interface, protocol and functionality of the interactions among individuals.

2. Hierarchical: Those individuals who play a role in an organization can be
highly organized. E.g., the lecturers in a university’s department can be
further divided into subject groups and play roles like lecturer in computer
science and lecturer of information systems, etc. In this way, the duty and
tasks of a role at a higher level are fulfilled through interactions between
roles at a lower level. Therefore, a role organization can be decomposed
hierarchically.

The representation of the structure of a dynamic system in the form of a
role organization is usually stable in the sense that the relationships between
the roles do not change so frequently as the those between the individuals of the
system. However, the relationships between the roles are not always constant. In
human organizations, new role can be formed and existing roles can be deleted
or merged into another role, etc. The revision of the role organization by the
organization itself leads to self-organized.

Roles together with the interaction paths among them compose a role or-
ganization. Many of role organizations are documented patterns (see Figure 3).
Role organization is helpful in:

1. It represents how agents interact. Each agent acts and communicates under
its role or roles.

2. As a frame in which agents bind certain roles, it enables the agents to change
their roles dynamically.

3. Essentially, roles can be organized into another role [14]. It can be instanti-
ated, generalized, specialized, and aggregated.

Considering a football team: the typical roles (goalkeeper, linebacker, van-
guard and attacker) compose a role organization (Figure 3). Note that except
goal-keeper, specializations of each role (e.g. left-backer, right-backer and middle-
backer as specializations of linebacker) compose role organizations as well.

Fig. 3. The pattern of football team roles

The rectangle in figure 3 denotes role; the links represent communication
paths; and notation 1 or * near link ends denotes quantities of the role.

www.manaraa.com

Modelling Multi-agent Systems with Soft Genes, Roles, and Agents 239

In comparison with existing works in which role and role organization are uti-
lized in analysis and design, we believe that as facilities for MAS modelling, they
should also be applied in implementation process. The reason will be illuminated
in section 6.

3.3 Agent

Each agent holds some soft genes and takes on one or more roles. Then an agent’s
composition can be written as:

Agent = < {Soft Gene}, {Role} >

Definition 5. An agent is an entity that comprises some soft genes together
with some bound roles.

The relation between soft genes and roles is maybound , and the bind method
is used to make such a relation between certain soft genes and roles.

maybound : Softgene ↔ Role

Agent
softgenes : P Softgene
roles : P Role
bind : Role �→ Softgege

softgenes �= φ
roles �= φ
bind ⊆ maybound

Because of limited space, we omitted other important schemas, e.g. agent
state, agent act, etc.

3.4 Be Intelligent to Live in Open and Dynamic Systems

In an open and dynamic system, agents need to know what/how they can do by
itself and what/how they can do with others. So long as an agent can alter its
bound roles, we say it has the intelligence to interact with others under an open
and dynamic environment. We believe that this definition and understanding of
agent has such advantages to others:

1. The set of soft genes in an application is quite stable. Every individual
(without interactions with others) is composed by some genes.

2. An agent can bind or discard some roles at run-time. This character is par-
ticularly useful for open and dynamic systems:
a) To create roles of some new types, the system just reads new role speci-

fications and create corresponding roles.

www.manaraa.com

240 Q. Yan et al.

b) After discarding some old roles, the system organizes interactions among
remaining agents through their bound roles.

c) By binding or discarding roles, an agent may dynamically alter its way
of interaction with other agents.

3. For implementation, multiple inheritance will be not necessary and then
corresponding side effects can be prevented.

As we have discussed in section 2, other agent definitions and methodologies
can not address these problems well, such as Gaia [4] or MaSE [15,10].

4 Structure and Behavior Model of MAS

To use definitions we have given (soft gene, role, agent) to model a MAS, both
structure and behavior models should be built.

4.1 Structure Model

The structure model includes:

1. Goal structure: The goal decomposition structure of the requirement of the
MAS.

2. Role model: The inheritance and aggregation relations among roles. Besides,
role model describes what goals and services included in the role.

3. Soft gene model: The inheritance and aggregation relations among soft genes.
Besides, soft gene model describes what services supported by it.

4. Agent model: Describes how and what soft genes and roles combine to gen-
erate agents. The inheritance and aggregation relations among agents make
up the structure model of agents.

When agent a1 inherits from agent a2, a3, etc. a1 will inherit these agents’
roles and visible genes, including all the attribute types and methods. When
agent a1 is aggregated by agent a2, a3, etc. a1 will get all these agents’ roles
and genes, whether they are visible or not. All the inheritance and aggregation
relations among agents make the complete structure agent models. However, this
is only simple introduction for inheritance and aggregation. In fact, we should
write detailed axiomatic semantics for these two relations. The work is left for
future works.

Agent structure model and role structure model together make up the system
structure model.

4.2 Behavior Model

The behavior model includes:

1. Soft gene’s behavior model: The methods of a soft gene stand for the gene’s
behaviors. Any behavior should be restricted by some behavior-rules, which
are represented as pre-conditions and post-conditions in logic formulae.

www.manaraa.com

Modelling Multi-agent Systems with Soft Genes, Roles, and Agents 241

2. Agent’s role transition model: An agent may bind or discard its roles at
run-time. The role transition can be modelled as a finite states machine
(automata), in which from the states system can know the roles bound to
the agent at that time; the transitions among states happen under certain
conditions.

3. Role’s interaction model: Sequence diagram may model roles’ interactions
well.

However, other models should be considered in modelling pragmatic systems.
For example, use case diagram [16] is one important modelling language. We will
represent a full version of models in section 5.

5 RoMAS: Role-Based MAS Modelling Methodology

Based on the definitions we have given, we propose a role-based modelling lan-
guage and methodology tailored to (1) explicitly separate soft gene and role
from agent conceptually and linguistically; (2) roles exist throughout the whole
process of MAS development. To demonstrate our language, we take the case
of RoboCup [6]football team simulation. The main development processes in
natural language is as follows:

1. Capture use cases and goals;
2. Identify roles from use cases;
3. Construct role organization;
4. For system components, distill their soft genes;
5. For each role, considering soft genes, if the appropriate genes does not exist,

then go to 6; else
a) Binds roles to genes and generate agents
b) Describes dynamic properties of bind relation between agents and roles
c) Go to 7

6. Generates agents according to roles; Go to 5.(a).
7. Generates codes for agents with roles bound;

5.1 Capture Use Cases and Goals

Use cases outline the system events and their interactions. We adopt Use Case
Diagram in UML to describe use cases. Figure 4 represents a use case (there
should be more in real system), in which rectangle denotes Actor and ellipse
denotes Use Case. In this example, Goalkeeper actor includes Hand Out use
case or Kick Out use case to pass the football; Linebacker actor includes Accept
Ball use case to get the football. In some possible conditions, Kick Out use case
may be extended by Run With Ball use case. See [17]for detailed information
about << include >> and << extend >> stereotypes. Goal hierarchies help to
decompose system goal to subgoals. We omit the graph here.

www.manaraa.com

242 Q. Yan et al.

Fig. 4. Example of a use case of football team

5.2 Identify Roles

Roles can be identified from use cases [16,18] and goals. Since they are not
sufficient for describing all the roles and events in the MAS. An assistant method
is to check the words with -er, -ist or -or suffix in the requirement specification.
Figure 5 shows an example notation of role, in which the right top text is the
role’s name, the ellipse with text shows the goals the role takes, the middle
rectangle with text shows the attributes, the bottom rectangle with text shows
the services the role provides and its responsibility. For more information about
these concepts, readers refer to [14].

Fig. 5. Example of a role in a football team

5.3 Construct Role Organizations

Roles are not isolate. Every role communicates and interacts with other roles to
fulfill its goals. Besides, roles can be specialized or aggregate to other roles.
Inheritance and aggregation associations respectively denote the specializa-
tion/generalization and aggregation/decomposition relations among roles. Fig-
ure 6 shows an example of role organization, in which rectangle with a semi-circle
denotes role; arrow line denotes communication path, triangle denotes inheri-
tance relation, diamond denotes aggregation relation, and rectangle with a line
on left-top corner denotes organization. For semantics of the notations, readers
refer to [19].

Role’s interaction model is sequence diagrams and it may model roles’ inter-
actions well. Just as figure 7 shows.

www.manaraa.com

Modelling Multi-agent Systems with Soft Genes, Roles, and Agents 243

Fig. 6. Example of a role-organization in a football team

Fig. 7. The example of role interaction in UML

5.4 Distill Soft Genes

Check system individuals and distill their genes. These soft genes later will be
inherited to become other genes. The genes determine agent’s attributes and
behavior with rules. Behavior rules are represented as:

< pre − condition > behavior < post − condition >

5.5 Bind Roles to Soft Genes and Generate Agents

For each role, the appropriate soft genes may exist or not. For genes (instances) in
existence, they (with the roles) are classified to agent directly. For inexistent soft
genes, our insight is that they are related with roles and thus can be generated
from roles. For detailed methods, readers are referred to [14].

An agent can change its roles dynamically. To make this property clear, we
apply finite automata to describe agent’s role transitions. See the example in
Figure 8. Circle represents state, which denotes the roles bound to the agent.
Arrow line denotes state transition, which is executed under the conditions or
messages listed near the line. The notation ”}”/”{” denote OR/AND relation
of the roles indicated on its right-side. For ”}”, only one of the roles is bound to
the agent; for ”}”, all the roles are bound to the agent.

www.manaraa.com

244 Q. Yan et al.

Fig. 8. Example of role transitions of football team

6 Related Works

Role concept has long been concerned since the advent of OO (Object-Oriented),
a famous work is [20,4]. Concerning role’s effect in MAS development, Gaia and
MaSE methodologies think roles are the result of analysis as undertakers of
system goal, and turned into agent classes in the implementation phase, while
the concept of role per se disappears. Besides, because of the fixation of role to
agent, the interactions among agents are decided according to the system goal
in the phase of design. As a result, an agent cannot change its roles at run-time.

The devising of MAS language is also a problem that has puzzled the agent
researchers for a long time. The works in existence include AGENT0 [21], SLABS
[22], etc. They provide foundations for AO language design. However further
researches on the implementation facilities are needed.

7 Conclusions and Future Works

In this paper, we propose a new definition of agent based on soft gene and role.
The new definition leads us to a diagrammatic role-based modelling method
supporting MAS analysis and design. With RoMAS, the ability and behavior
embodied by an agent in MAS is a combination of its soft genes and its roles.
Soft genes state the basic perceptive and behavior abilities; roles represent sys-
tem goal and constrain agents’ behavior. They exist throughout all phases from
analysis to implementation, which enables a natural realization of dynamic bind-
ings between agents and roles.

Further work focuses on developing an application with RoMAS:

1. By introducing the concept of soft agent, role and organization to the sys-
tem, enable every agent in the system to take on roles according to its own
mental state and its situation, so as to improve the system’s adaptive and
collaborative ability.

2. Based on the study of role concept in MAS and further analysis of its dy-
namics, take the RoboCup as a case, design and develop a simulation client
to testify RoMAS’ pragmatic efficiency.

www.manaraa.com

Modelling Multi-agent Systems with Soft Genes, Roles, and Agents 245

Acknowledgments. Thanks Mr. James Odell for his helpful advice and dis-
cussion. Thanks Ms. LiJun Shan for her correcting English grammar.

References

1. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2)
(2000)

2. Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State
of The Art . in Handbook of Software Engineering and Knowledge Engineering
(2001,World Scientific Publishing)

3. Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60 (1993) 51–92
4. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-

Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems 3 (2000) 285–312

5. Web: (www.etse.urv.es/recerca/banzai/toni/MAS/)
6. RoboCup: (http://www.robocup.org)
7. Yan, Q., Shan, L.J., Mao, X.J.: RoMAS: A Role-Based Modeling Method for

Multi-Agent System. Proceedings of International Conference on Active Media
Technology, World Scientific Publishing (2003)

8. Feng, Z.Y., Sun, C.S., Wang, D.: Actor Theory: New Age and New System Calling
New Human Study (in Chinese). Peking University Press (1994)

9. Iglesias, C., Garijo, M., Gonzalez, J.: A Survey of Agent-Oriented Methodologies.
Intelligent Agents V (1999)

10. Deloach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent Systems Engineering.
International Journal of Software engineering and Knowledge Engineering 11(3)
(2001)

11. Staff, A.H.: The American Heritage Dictionary. Turtleback Books (01/01/2001)
12. Dawkins, R.: The SELFISH GENE. Oxford University Press Paperback (October

1989)
13. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall (1989)
14. Yan, Q., Mao, X.J., Qi, Z.C.: Modeling Role-Based Organization of Agent System.

UKMAS’02 (2002)
15. DeLoach, S., Wood, M.: Developing multiagent systems with agenttool. Intelligent

Agents VI 1757 (2000)
16. Jacobson, I.: Object Oriented Software Engineering: A Use Case Driven Approach.

Addison Wesley (1992)
17. OMG: http://www.omg.org/technology/documents/formal/. Specification of

UML (1995)
18. KenDall, E.A., Palanivelan, U., Kalikivayi, S.: Capturing and Structuring Goals:

Analysis Patterns. EuroPlop’98, European Pattern Languages of Programming
(July 1998)

19. Andersen, E.E.: Conceptual Modeling of Objects: A Role Modeling Approach.
PhD thesis, PhD Thesis, University of Oslo (1997)

20. Reenskaug, T., Wold, P., Lehne, O.A.: Working with Objects, The OOram Software
Engineering Method . Manning Publications Co,, Greenwich (1996)

21. Shoham, Y.: Agent0: An Agent-Oriented Programming Language and Its Inter-
preter. Journal of Object-Oriented Programming 8(4) (1991) 19–24

22. Zhu, H.: SLABS: A Formal Specification Language for Agent-Based Systems. Int.
J. of Software Engineering and Knowledge Engineering 11 (2001) 529–558

www.manaraa.com

Author Index

Athanasiadis, Ioannis N. 96
Aknine, Samir 138

Bauer, Bernhard 1
Botti, Vicente 25
Brueckner, Sven 123, 201

Dyke Parunak, H. Van 123, 201

Ferber, Jacques 214
Fleischer, Mitch 123
Fuentes, Rubén 110

Georgousopoulos, Christos 167
Giret, Adriana 25
Gómez-Sanz, Jorge J. 110
Goradia, Hrishikesh J. 153
Gutknecht, Olivier 214

Hassas, Salima 185

Jouvin, Denis 185
Juan, Thomas 53

Karageorgos, Anthony 167
Kehagias, Dionisis 96
Klein, Mark 85

Manson, G. 69
Mao, XinJun 231
Michel, Fabien 214

Mitkas, Pericles A. 96
Mouratidis, Haralabos 69
Müller, Jörg P. 1

Odell, James J. 69, 123, 201

Pavón, Juan 110
Perini, Anna 36
Pistore, Marco 36
Poggi, Agostino 69

Qi, ZhiChang 231
Quenum, José Ghislain 138

Rana, Omer F. 167
Rimassa, Giorgio 69
Roveri, Marco 36

Sauter, John 201
Slodzian, Aurélien 138
Sterling, Leon 53
Susi, Angelo 36
Symeonidis, Andreas L. 96

Turci, Paola 69

Vidal, José M. 153

Yan, Qi 231

Zhu, Hong 231

	Frontmatter
	Modeling Agents and Multiagent Systems
	Using UML in the Context of Agent-Oriented Software Engineering: State of the Art
	Towards a Recursive Agent Oriented Methodology for Large-Scale MAS
	Agent-Oriented Modeling by Interleaving Formal and Informal Specification
	The ROADMAP Meta-model for Intelligent Adaptive Multi-agent Systems in Open Environments
	Modeling Deployment and Mobility Issues in Multiagent Systems Using AUML

	Methodologies and Tools
	A Knowledge-Based Methodology for Designing Reliable Multi-agent Systems
	A Framework for Constructing Multi-agent Applications and Training Intelligent Agents
	Activity Theory for the Analysis and Design of Multi-agent Systems
	A Design Taxonomy of Multi-agent Interactions
	Automatic Derivation of Agent Interaction Model from Generic Interaction Protocols

	Patterns, Architectures, and Reuse
	Building Blocks for Agent Design
	Supporting FIPA Interoperability for Legacy Multi-agent Systems
	Dynamic Multi-agent Architecture Using Conversational Role Delegation

	Roles and Organizations
	Temporal Aspects of Dynamic Role Assignment
	From Agents to Organizations: An Organizational View of Multi-agent Systems
	Modelling Multi-agent Systems with Soft Genes, Roles, and Agents

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

